

No.	Optimize	er operations
	Operation	Description
	Evaluation of expressions and conditions	The optimizer first evaluates expressions and conditions containing constants as fully as possible
	Statement transformation	For complex statements involving, for example, correlated sub-queries or views, the optimizer might transform the original statement into an equivalent join statement
	Choice of optimizer goals	The optimizer determines the goal of optimization
	Choice of access paths	For each table accessed by the statement, the optimizer chooses one or more of available access paths to obtain data
	Choice of join orders	For a join statement that joins more than two tables, the optimizer chooses which pair of tables is joined first, and then which table is joined to the result, and so on
	Choice of join methods	For a join statement that joins more than two tables, the optimizer chooses which join method is exploited to perform the required operation
D	^B MG	Database Management Systems 7

Oracle Optimizer

Oracle Optimizer

Index Unique Scans

- This scan returns <u>at most</u> a single rowid for each indexed value
- Oracle performs a unique scan if a statement contains a UNIQUE or a PRIMARY KEY constraint that guarantees that only a single row is accessed
- It is used when all columns of a unique (e.g., B-tree) index or an index created as a result of a primary key constraint are specified with equality conditions

Tania Cerquitelli Politecnico di Torino

Oracle Optimizer

DMG

- Bitmap indexes are most effective for queries that contain multiple conditions in the WHERE clause
- They are usually easier to destroy and recreate than to maintain
- A bitmap join uses a bitmap for key values and a mapping function that converts each bit position to a rowid

Database Management System

			u,			
tion	Name	1.1	Rows	Bytes	Cost	(%CPU)
T STATEMENT		1	3	1 189	1 10	(10)
ED LOOPS		- i -	3	189	1 10	(10)
TED LOOPS		- i -	3	1 141	i 7	(15)
BLE ACCESS FULL	EMPLOYEES	- î -	3	60	1 4	(25
BLE ACCESS BY INDEX ROWID	JOBS	1	19	513	2	(50
NDEX UNIQUE SCAN	JOB ID PK	1	1	1	1	
LE ACCESS BY INDEX ROWID	DEPARTMENTS	1	27	432	1 2	(50
DEX UNIQUE SCAN	DEPT_ID_PK	1	1	1	j –	
BI	E ACCESS BY INDEX ROWID DEX UNIQUE SCAN CCESS BY INDEX ROWID X UNIQUE SCAN	LE ACCESS BY INDEX ROWID JOBS DEX UNIQUE SCAN JOB_ID_PK ACCESS BY INDEX ROWID DEPRATMENTS X UNIQUE SCAN DEPT_ID_PK	LE ACCESS BY INDEX ROWID JOBS DEX UNIQUE SCAN JOB_ID_PK ACCESS BY INDEX ROWID DEPARTMENTS IX UNIQUE SCAN DEPT_ID_PK	LE ACCESS BY INDEX ROWID JOBS 19 EX UNIQUE SCAN JOB_ID_PK 1 ACCESS BY INDEX ROWID DEPARTMENTS 27 X UNIQUE SCAN DEPT_ID_PK 1	LE ACCESS BY INDEX ROWID JOBS 19 513 EX UNIQUE SCAN JOB_ID_PR 1 ACCESS BY INDEX ROWID DEPARTMENTS 27 432 X UNIQUE SCAN DEPT_ID_PR 1	LE ACCESS BY INDEX ROWID JOBS 19 513 2 EV UNIQUE SCAN JOB_ID_PK 1 ACCESS BY INDEX ROWID DEPARTMENTS 27 432 2 X UNIQUE SCAN DEPT_ID_PK 1

Tania Cerquitelli Politecnico di Torino

Histograms

- Column statistics may be stored as histograms which provide accurate estimates of the distribution of column data.
- Histograms provide improved selectivity estimates in the presence of data skew, resulting in optimal execution plans with non-uniform data distributions
 Oracle uses two types of histograms for column
- oracle uses two types of histograms for column statistics
 Height-balanced histograms
 - Frequency histograms
- The type of histogram is stored in the HISTOGRAM column of the USER/DBA_TAB_COL_STATISTICS views

Database Management Systems

52

Frequency Histograms In a frequency histogram, each value of the column corresponds to a single bucket of the histogram Each bucket contains the number of occurrences of . that single value. Frequency histograms are automatically created instead of height-balanced histograms when the number of distinct values is less than or equal to the number of histogram buckets specified Frequency histograms can be viewed using the ***USER_HISTOGRAMS** tables DMG Database Management Systems 55

Tania Cerquitelli Politecnico di Torino

DMG

FROM USER_TAB_COL_ST WHERE table_name = '1	m_distinct, num_buckets, histogram ATISTICS :NVENTORIES' AND column_name = 'WAREHOUSE_ID'
COLUMN_NAME	NUM_DISTINCT NUM_BUCKETS HISTOGRAM
WAREHOUSE_ID	9 9 FREQUENCY
WHERE table_name = '1 ORDER BY endpoint_nu	NVENTORIES' and column_name = 'WAREHOUSE_ID' mber;
WHERE table_name = '1 ORDER BY endpoint_nu ENDPOINT_NUMBER ENDPOI	NVENTORIES' and column_name = 'WAREHOUSE_ID' mber; NT_VALUE
WHERE table_name = '' ORDER BY endpoint_nu ENDPOINT_NUMBER ENDPOI 	<pre>NVEENCORIES' and column_name = 'WAREHOUSE_ID' mber; NT_VALUE 1 2</pre>
WHERE table_name = '] ORDER BY endpoint_nu ENDPOINT_NUMBER ENDPOI 36 213 261	NVENTORIES' and column_name = 'WAREHOUSE_ID' mmber; NT_VALUE 1 2 3
WHERE table_name = '] ORDER BY endpoint_nu ENDPOINT_NUMBER ENDPO: 36 213 261 370	<pre>NVENTORIEs' and column_name = 'WAREHOUSE_ID' mber: NT_VALUE 1 2 3 4</pre>
WHERE table_name = '1 ORDER BY endpoint_nu ENDFOINT_NUMBER ENDFOI 36 213 261 370 484	NVENTORIES' and column_name = 'WAREHOUSE_ID' mmber; INT_VALUE 1 2 3 4 5
WHERE table_name = '] ORDER BY endpoint_nu ENDPOINT_NUMBER ENDPO 36 213 261 370 484 692	NVENTORIES' and column_name = 'WAREHOUSE_ID' mmber; NT_VALUE 1 2 3 4 5 6
WHERE table_name = '' ORDER BY endpoint_n' ENDPOINT_NUMBER ENDPO 36 213 261 370 484 692 798	NVENTORIES' and column_name = 'WAREHOUSE_ID' mmber; INT_VALUE 1 2 3 4 5 6 7
WHERE table name = ': ORDER BY endpoint_ni ENDPOINT_NUMBER_ENDPO: 36 213 261 370 484 692 798 984	NVENTORIES' and column_name = 'WAREHOUSE_ID' mber; NT_VALUE

Value	Description
ALL_ROWS	The optimizer uses a cost-based approach for all SQL statements in the session. It optimizes with a goal of best throughput (minimum resource use to complete the entire statement). Default
FIRST_ROWS_n	The optimizer uses a cost-based approach, optimizes with a goal o best response time to return the first n number of rows; n can equal 1, 10, 100, or 1000
FIRST_ROWS	The optimizer uses a $\mbox{\bf mix}$ of cost and heuristics to find a best plan for fast delivery of the first few rows
FIRST_ROWS	The optimizer uses a \mbox{mix} of cost and heuristics to find a best for fast delivery of the first few rows

Tania Cerquitelli Politecnico di Torino