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SUMMARY

The research activity in data mining has been initially focused on discovering efficient in-

memory algorithms to perform the task of frequent itemset mining. However, many of them

scale non-linearly with the size of the datasets and, as the latter become larger, the mining

process is faced with issues such as main memory exhaustion, massive I/O and long execution

times.

As a consequence, approaches that rely on secondary storage to support the data mining

process are drawing increasing attention. Many of the proposed solutions still suffer from some

limitations: they often address specific data distributions, they can hardly handle more than a

few million records and their performance is usually worse than flat file mining.

This master thesis has been pursuing the development of a disk-based data mining-oriented

framework initiated by former graduate students. The proposed approach splits the mining

process in two steps. A complete, compact and persistent representation of the original dataset

is built once, stored on secondary memory in the form of a hybrid prefix-tree (called Hybrid-

Tree) and exploited for multiple mining sessions. Mining activities are then performed on

relevant portions of the data structure. In addition, the framework benefits from an ad-hoc

buffer management strategy which efficiently handles data loading from secondary to main

memory.

The focus of my work has been on different optimizations which proved able to significantly

improve both the creation and the mining process in terms of execution time, disk space usage,
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SUMMARY (Continued)

main memory consumption and scalability. The proposed contributions have been addressing

the materialization process, the development of an indexing structure and the integration of an

efficient mining algorithm in the disk-based framework.

Building the persistent hybrid tree requires three main steps: (i) sort the transactional

dataset, (ii) build a temporary disk-based tree structure and (iii) store the final Hybrid-Tree on

disk. Sorting transactions beforehand yields important benefits in the creation phase, because

it avoids multiple, temporally non-local visits of the same portion of the tree, thus reducing

I/O times. However, since this step was the most resource-demanding one (i.e., 55%-60% of the

overall creation time), a novel sorting technique has been devised. The proposed solution relies

on splitting the dataset into disjoint, fixed-size partitions, which are then sorted and written on

disk independently of all others. This is a significant benefit, because it avoids several passes

over the entire dataset and, seen the huge size of the latter, frequent memory swaps. A further

achievement of the proposed approach is that it scales linearly with the size of the dataset.

To enhance mining activity, an indexing structure has been designed and developed for

the Hybrid-Tree. This compact index enables an item-based traversal of the tree, required

by several frequent itemset mining algorithms. The index consists of a per-item array-based

structure, allowing fast loading and scanning. Although non-covering with respect to the mining

task, this index replicates a considerable amount of the information included in the tree, which

often results in a larger size than the tree itself. Hence, a compression technique has been

designed and implemented to reduce its size, exploiting a differential coding scheme and ad-hoc
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SUMMARY (Continued)

structures that maximize data packing. This approach was able to yield a disk space saving of

about 33%, while additionally being roughly linear in the size of the index.

Further, some primitives have been developed to support the selective retrieval from the

Hybrid-Tree of the transactional data involved in the mining process. They rely on the Item-

Index to carry out the extraction of item-based projections of the dataset by efficiently navigat-

ing the tree in both top-down and bottom-up fashion. Their main advantage is that of enabling

a tighter integration with mining algorithms. In particular, LCM v.2 is a mining algorithm

which has proved to outperform all other state-of-the-art algorithms in most cases. Despite its

linear complexity, which makes it very suitable for large datasets, its original implementation

requires that the entire dataset be loaded in main memory, thus majorly limiting its scalability.

Following a tight integration approach, LCM v.2 has been analyzed to identify algorithm-

specific data access behaviors. Its routines have been decomposed and interleaved with the

selective retrieval of item-based projections from the Hybrid-Tree. This was possible thanks to

the developed data access primitives.

The algorithm has thus been integrated in our framework by partitioning the loading so that

only a support-based projection of a single item is processed in main memory at a time. Its

memory requirements have thus been greatly reduced, ultimately making it far more scalable.

Performance assessments showed that the mining process still completes in a relatively short

time (less than 45 minutes) on datasets larger than the available physical memory by over one

order of magnitude, while memory usage is still very low.

x



CHAPTER 1

INTRODUCTION

The field of knowledge discovery and data mining is targeted at the extraction of useful

information from raw data. The researcher community has shown increasing interest in this

challenge, spurred by the explosion, in the recent years, of the amount of information stored in

large databases, such as data warehouses.

One of the activities of data mining is known as association rule mining, which heavily relies

on frequent itemset mining. This is a powerful method aimed at finding correlations among

data items in a transactional dataset, given a support threshold. It is widely used in the so-

called market basket analysis to discover regularities in the shopping behavior of customers of

supermarkets, on-line shops and the like, but it can be profitably applied to a number of other

tasks such as credit card fraud detection, medical diagnosis and monitoring, network traffic

characterization.

The research activity in data mining has been initially focused on the discovery of efficient

algorithms to perform the resource-intensive task of frequent itemset mining. Nonetheless,

many of these algorithms are computationally complex and scale non-linearly with the size of

the datasets. As datasets become larger, the number of frequent patterns explodes and the

mining process is faced with critical issues such as main memory exhaustion, massive I/O and

very long execution times.
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While much research in this area is still largely focused on the development of main-memory

data structures that enable a compact representation and an efficient analysis of transactional

data, approaches that rely on secondary storage to support the effective retrieval of data involved

in the mining process are receiving increasing attention.

Up to now, many of the proposed solutions still suffer from some limitations: they often

address specific data distributions, they can hardly handle more than a few millions of records

and their performance is usually worse than, or at best comparable with flat file mining.

The aim of this master thesis has been that of pursuing the development of a disk-based

data mining-oriented framework initiated by former graduate students.

This framework exploits a disk-resident, permanent data structure which compactly and

thoroughly represents the original dataset in the form of a prefix-tree, called Hybrid-Tree, similar

to the FP-tree structure employed by the FP-growth mining algorithm. The proposed approach

splits the mining process in two steps. First, a persistent representation of the original dataset

is built once, stored on secondary memory and exploited for multiple mining sessions. Mining

activities are then performed on relevant portions of the data structure.

In addition, this framework benefits from an ad-hoc buffer management strategy which

efficiently handles the loading and unloading of selected pages from the tree in and out of main

memory.

The focus of my work has been on different optimizations which proved able to significantly

improve both the creation and the mining process, in terms of execution time, disk space usage,

main memory consumption and scalability.
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My contribution has been addressing the following issues:

• creation of the persistent representation;

• development of an indexing structure;

• integration of an efficient mining algorithm in the disk-based framework.

The rest of this master thesis work is organized as follows.

Chapter 2 gives an overview of some efficient state-of-the-art mining algorithms; it then

introduces the problem of large dataset mining and presents a number of possible approaches

to deal with it.

Chapter 3 describes the proposed disk-based Hybrid-Tree approach to support itemset ex-

traction from very large datasets.

The steps necessary to the creation of the Hybrid-Tree and the issues that may arise are

explained in Chapter 4, while the low-level data access framework exploited in both the creation

and the mining phase is described in Chapter 5.

Chapter 6 presents two possible strategies to integrate existing mining algorithms into the

developed framework. It then focuses on one efficient mining algorithm and describes how it

was tightly integrated in the framework to enhance its scalability.

Chapter 7 presents an analysis of the compaction achieved by the Hybrid-Tree and Item-

Index structures. Experimental results, in terms of materialization time, are then presented to

evaluate the benefits provided by the devised sorting algorithm.
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Chapter 8 provides an in-depth view on the mining performance of the proposed LCM v.2

integration.

Conclusions and possible future work are outlined in Chapter 9.



CHAPTER 2

RELATED WORK

Research activity in data mining has initially been focused on the development of efficient

in-memory data structures and algorithms to perform the complex task of frequent itemset

extraction. Due to the ever-increasing capabilities of collecting and storing raw data, frequent

itemset mining algorithms are now likely to deal with datasets that can easily include millions,

or even billions, of transactions, sizing hundreds of gigabytes.

The first part of this chapter will briefly outline some state-of-the-art in-memory algorithms

which mark significant advances with respect to the baseline techniques (e.g., Apriori). In the

second part of the chapter, a more in-depth view on existing attempts to mine large datasets

is given, pointing out their advantages and weaknesses.

2.1 In-memory data mining algorithms

2.1.1 FP-growth

The FP-growth approach exploits a frequent pattern tree, called an FP-tree, and an efficient

FP-tree-based mining technique, FP-growth, to extract the complete set of frequent patterns

by pattern fragment growth.

As described in (1), FP-growth owes its efficiency to three main points:

FP-tree compact data structure. An innovative and compact data structure, called Fre-

quent Pattern tree, or FP-tree for short, is constructed from a transactional dataset in

5
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the form of an extended prefix-tree, storing quantitative information about frequent pat-

terns. Nodes in the tree represent length-1 frequent itemsets and, thanks to a clever

pre-processing of each transaction, more frequently occurring items have better chances

of sharing nodes than less frequently occurring ones. This results in a much higher degree

of compaction in comparison with storing the dataset in transaction form.

FP-growth algorithm. An FP-tree-based pattern fragment growth mining method is adopted,

which starts from a frequent length-1 pattern as an initial suffix pattern, examines its con-

ditional pattern base (i.e., the projection database which consists of the set of frequent

items co-occurring with the suffix pattern), constructs its conditional FP-tree and per-

forms mining recursively on that tree. The pattern growth is achieved via concatenation

of the suffix pattern with the new ones generated from conditional FP-trees. Unlike Apri-

ori, which generates a large number of candidate frequent itemsets and has to perform the

costly operation of pattern matching on the original dataset throughout multiple scans,

FP-growth only performs count accumulation and prefix path count adjustment, which

are far less expensive.

Partitioning-based search technique. The search technique employed in mining is a partitioning-

based, divide-and-conquer one, rather than an Apriori-like bottom-up generation of fre-

quent itemset combinations. This dramatically reduces the size of the conditional pattern

base generated at the subsequent level of search as well as the size of the correspond-

ing conditional FP-tree. Furthermore, the problem of finding long frequent patterns is

reduced to looking for shorter ones and then concatenating the suffix.



7

All these techniques contribute to substantial reduction of search costs and enable the FP-

growth approach to successfully tackle the mining process of much larger datasets than it is

possible with Apriori.

2.1.2 NonordFP

The NonordFP approach (2) is based on a variation of the FP-tree structure employed by

FP-growth. Compared to the latter, NonordFP exploits a more compact representation that

allows faster allocation, traversal and, optionally, projection. It maintains less administrative

information (e.g., nodes do not need to store their labels, no header lists and children mappings

are required, only counters and parent pointers) and allows more recursive steps to be carried

out on the same data structure, without the need to rebuild it as it is the case with FP-growth.

Drawbacks of never rebuilding the tree also exist: although projection is possible to fil-

ter conditionally infrequent items, the order of the items cannot be changed to adapt to the

conditional frequencies, and hence the acronym of the algorithm.

In addition to the theoretical innovations that lay the foundations of this algorithm and

its data structures, NonordFP presents a thorough handling of implementation issues, memory

layout, I/O acceleration and library functions and exhibits better performance than FP-growth

in most cases.

2.1.3 LCM v.2

LCM v.2 is an efficient itemset mining algorithm that currently outperforms any other

existing approach, thanks to some clever data structures. Different versions of LCM are able to

solve different but related frequent itemset mining problems, by finding all frequent itemsets, all
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frequent closed itemsets and all frequent maximal itemsets. This is particularly advantageous

when large datasets and low support thresholds are concerned, because the number of frequent

patterns can easily become huge and the results of the mining process unmanageable. In this

case, alternative (but complete) representations of frequent itemsets, such as closed frequent

itemsets, can be highly beneficial.

As outlined in (3), LCM relies on two efficient techniques, prefix preserving closure and

occurrence deliver, whose time complexity is theoretically bounded by a linear function in

the number of frequent closed itemsets, unlike all other existing algorithms. Moreover, the

framework of LCM is simple and needs no sophisticated data structures such as binary trees:

LCM is in fact implemented with arrays only. These array-based structures are populated

during an additional reading of the in-memory dataset representation and are accessed during

the mining phase, speeding up the frequency counting.

As a main drawback, these structures need to be fully memory-resident to avoid vanishing

the huge benefit they produce. They cannot be lazy-loaded, since they are expected to work as

associative arrays and provide random access in O(1) time. Nonetheless, some optimizations

are possible, as discussed later in Section 6.3.

2.2 Dealing with large datasets

As previously outlined, all the best performing frequent itemset mining algorithms heavily

rely on efficient memory-resident data structures. In addition, most of them scale non-linearly

with the size of the data they have to process. In such a context, as soon as these algorithms are
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applied to larger datasets, critical issues arise such as extremely long execution times, memory

footprint exceeding the size of main memory, massive I/O required, and a huge search space.

In the last years the problem of large dataset mining has received increasing attention and

a number of solutions have been investigated. While some of them have been focused on the

optimization of already existent in-memory algorithms, others have tackled the problem from

different and sometimes innovative viewpoints. The following sections will present the main

approaches that have been explored in the literature.

2.2.1 Optimizing existing in-memory algorithms

This class of approaches aims at optimizing the data structures and/or some procedures

of already existent in-memory algorithms. They sometimes introduce novel and more compact

structures which reduce main memory occupation and therefore push the scalability limit a

little farther. For this reason, they can hardly be considered as real solutions, but they are

nonetheless interesting because the devised techniques can sometimes be profitably applied to

other classes of solutions.

An interesting proposal, COFI-tree (Co-Occurrence Frequent Item-tree) mining (4), was

presented by M. El-Hajj and O. R. Zäıane. The idea behind this approach is a new anti-

monotone property called the global frequent/local non-frequent property, which extends the

Apriori principle, because it is able to eliminate items belonging to the i-itemset which are sure

not to participate in the (i+1) candidate set. It exploits an ad-hoc tree structure, called the

COFI-tree.
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The algorithm for building the COFI-trees can be broken down into two phases. In the first

phase an FP-tree with bidirectional pointers is constructed in main memory. In the second phase

COFI-trees are built for each frequent item, one item at a time, starting from the least frequent

one. The mining phase occurs independently for each COFI-tree, which is then discarded before

the next one is built.

The main accomplishment of this approach is the significant amount of memory it saves

by comparison with FP-growth (one order of magnitude less). This is achieved by means of

the non-recursive technique used in the mining process and the pruning method exploited to

remove all local non-frequent items. It also, sometimes considerably, outperforms FP-growth

in terms of speed.

Another innovative approach is the UT-mine algorithm proposed by Fei-Yue Ye et al. (5). It

is explicitly targeted at sparse databases, which can be efficiently represented in main memory

by means of a new data structure, the Unit Triplet (UT). These data structures are populated

once during an initial scan of the dataset and then read multiple times to produce k-itemsets.

The main advantage of this approach is the reduced amount of memory and dataset scans it

necessitates, compared to FP-growth.

2.2.2 Partitioning the original dataset

Solutions that mine large datasets by partitioning are quite straightforward to implement

and are often the preferred choice. In principle, this technique could be applied to any in-

memory algorithm, allowing it to deal with very large datasets. It is sufficient to:

1. split the original dataset so that each partition fits in main memory;
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2. mine these partitions by means of the mining algorithm of choice;

3. join the results performing a union on the itemsets found for each partition.

Simple as it looks, this solution hides two significant disadvantages, namely the cost of the

joining phase and the waste of CPU time due the over-computation generated by a non-pruned

search space. Many useless itemsets are computed in each partition and discarded during the

joining phase, being only locally frequent.

The widespread Partition (6) algorithm follows this principle, based on a divide-and-conquer

strategy, but suffers from the aforementioned limitations. The latter are partly overcome by

algorithms such as H-Mine (7), which finds globally frequent items before partitioning and can

thus prune each partition of all infrequent items. In addition, it introduces an improved joining

method.

The UT-mine algorithm described in the previous section can also resort to partitioning.

In the case where the Unit Triplet structures cannot be accommodated in main memory, the

transaction database is split and itemsets are identified in each partition. During the join phase,

four cases may occur:

• an itemset satisfies the local support threshold in every partition, so it is global frequent;

• an itemset satisfies the local support threshold in some partitions and the accumula-

tive support across those partitions satisfies the global support threshold, so it is global

frequent;
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• an itemset does not satisfy the local support threshold in any of the partitions, so it is

global infrequent;

• an itemset satisfies the local support threshold in some partitions, but the accumulative

support across those partitions does not satisfy the global support threshold; in this case, a

further scan of the remaining partitions is required to compute the local supports, which

are then summed to obtain the global support and determine if the itemset is global

frequent.

On the whole, when large-sized databases are involved, at most two complete scans of the

dataset are required by this algorithm. Even so, it is hardly scalable on huge datasets.

2.2.3 Exploiting relational DB structures

A different class of approaches is that of SQL-based data mining. The intuition that existing

DBMS frameworks could be profitably exploited to perform a number of data mining tasks is

the driving force of this family of solutions. The bottom-line is “not to reinvent the wheel”:

DBMSs already offer optimized disk access primitives and intrinsically handle main memory

shortcomings. As a consequence, turning the data structure into a relational form allows the

exploitation of these efficient, ready-made techniques and could in principle yield excellent

mining performance on large datasets.

The first proposed SQL-based algorithm described in the literature is the SETM algorithm

(8). The principal problem with this algorithm is the large number of join operations yielding

the candidate set, which is computed prior to the actual mining and support counting phase.

For huge datasets, this approach becomes unfeasible.
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In the recent times, solutions that try to integrate efficient mining algorithms directly in

the DBMS have started to appear. DBFP-growth (9) proposes a novel, disk-based FP-tree

representation in the form of relational DB tables. In order to perform the mining task, the

proposed approach implements the FP-growth algorithm, whose highlight is that of not gener-

ating any candidate set. The implementation resorts to Oracle PL/SQL stored procedures. The

advantage over an SQL-based solution is that stored procedures are compiled separately and

stored permanently in the database, rather than being processed each time, one SQL statement

at a time. This yields better performance, while still providing all the functionality of SQL.

A third approach is the one adopted by I-Mine (10): a covering index, integrated in Post-

greSQL, supporting, in principle, any kind of mining algorithm. I-Mine provides an exhaustive

representation of the original dataset by means of an indexed FP-tree-based structure, stored

in relational form.

2.2.4 Relying on virtual memory

For over two decades, operating systems have provided programmers with a virtual address

space that is significantly larger than the physical one. Paging mechanisms are responsible for

moving data and instructions in and out of main memory, as and when needed. Commod-

ity PCs traditionally shipped with 32-bit processors, which, regardless of the actual physical

memory size, limited the maximum memory address space to 4 GB. Nowadays, desktop PCs

are typically afforded 64-bit CPUs, which translates to a nearly unlimited amount of virtual

memory, bounded only by the available disk space.
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As a consequence, in-core mining algorithms could in principle exploit this large amount of

virtual memory to process out-of-core datasets, while relying on the operating system’s paging

mechanism to automatically handle data movement between main memory and secondary stor-

age in a transparent way. The key benefit of such an approach is its implementation simplicity,

since no change is required to the original in-memory algorithm, which can operate just as if

its entire address space were physically available.

In practice, however, as soon as the process runs out of physical memory and starts swapping

to and from disk, the CPU becomes largely idle, which renders virtual memory-based solutions

extremely inefficient. This is especially true of data structures and algorithms which exhibit

poor spatial and temporal locality, forcing continuous swapping and causing the processor to

wait on the completion of a page fault for the overwhelming majority of time.

In the worst case even the available virtual memory may not suffice, making the mining

process abort.

2.2.5 Exploiting disk-based structures

Relying solely on main memory is no longer an option when facing large datasets and

alternative solutions are quickly becoming imperative. Approaches that explicitly target the

exploitation of efficient disk-based data structures have also been proposed to support the

extraction of knowledge from large datasets.

Ramesh et al. (11) proposed B+tree-based indices to access data stored by means of either

a vertical (e.g., ECLAT-based) or a horizontal (e.g., Apriori-based) representation. However,

these solutions are usually worse than, or at best comparable to, flat file mining.
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El-Hajj and Zäıane (12) proposed a disk-based data structure, called Inverted Matrix, to

store the transactional database in an in inverted matrix layout. The COFI-tree algorithm

is then exploited for frequent itemset extraction. This solution is still not widely applicable,

because it specifically addresses very sparse datasets, characterized by a large number of items

with unit support.

Grahne and Zhu (13) proposed the Diskmine approach, which uses recursive projections to

partition the data until it fits in main memory and subsequently exploits an in-core algorithm

(FP-growth) to mine it. Projected partitions are written on disk and retrieved as needed. At

the end of the mining process, the frequent itemsets can be computed by taking the union of the

itemsets mined from each projection. The major downsides to this approach are the several,

costly accesses to the potentially large number of materialized partitions and the significant

disk space the latter may require. In addition, when the frequent 1-itemset projection does not

fit in memory, then all combinations of frequent 2-itemsets must be projected, even if a large

subset of these itemsets are not actually frequent. One of the main advantages of FP-growth

(i.e., no need for candidate generation) is thus eliminated.

2.2.6 Directly managing the I/O

Reducing the computational complexity of mining algorithms and the main memory require-

ments cannot, by itself, yield true scalability. On the other hand, when relying on secondary

storage, the vast majority of time is spent with I/O operations; approaches that claim to tackle

huge dataset mining in a timely and scalable fashion cannot disregard an efficient I/O manage-
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ment. This can be achieved by exploiting an already available I/O framework, such as the one

of a DBMS, or by developing I/O-conscious applications.

A significant example of direct I/O management that has led to optimal results in terms

of execution times, CPU utilization and memory footprint has been provided by Buehrer et al.

(14). They proposed several I/O conscious optimizations to construct and subsequently mine

a disk-resident FP-tree structure which exploits a clever physical organization and an ad-hoc

data access infrastructure.

The creation process benefits from a preliminary partitioning and approximate hash sorting

step, which enables to build a prefix tree on disk while keeping in main memory only the

currently elaborating chunk. This technique dramatically reduces the number of page faults

and the overall creation time.

Once created, this tree is reallocated in virtual memory by means of a depth-first visit: this

ensures spatial locality during the mining phase, which traverses the prefix tree in a bottom-

up fashion. The mining process is additionally restructured to exploit temporal locality by

maximizing the reuse of the prefix tree once it is fetched into main memory. This is accomplished

by breaking down the tree into blocks of memory along paths of the tree from leaf nodes to the

root. Each block is iteratively loaded in main memory and the conditional pattern bases for all

items that hit the block are computed at once.

Another efficient I/O conscious disk-based solution has been proposed by M. Adnan and

R. Alhajj under the name of DRFP-tree (Disk-Resident Frequent Pattern-tree) (15). This

novel approach initially constructs an FP-tree in main memory and tries to mine it with the
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traditional FP-growth algorithm; it will then expand into secondary storage, creating a disk-

resident FP-tree and mining it with its own disk-resident version of FP-growth, only if it runs

out of physical memory.

During a pre-processing phase an exact sorting is performed on the original dataset. After

that, a memory-based FP-tree is constructed. If at some point it becomes evident that the

main tree, or the projection ones needed for the subsequent mining operations, cannot be

accommodated in physical memory, stale subtrees are saved on secondary storage, following a

DFS order, in a compact form. This is possible because the preliminary sorting guarantees that

new branches are always inserted in the rightmost part of the prefix-tree.

Experimental results show non-negligible performance degradation when the algorithm has

to switch from the memory-based to the disk-based implementation. However, in-memory FP-

growth fails to mine large datasets when low support thresholds are used, while the disk-based

version still succeeds in the task.



CHAPTER 3

THE LSD FRAMEWORK

The proposed disk-based data mining framework, LSD (a Large-Scale Data-mining frame-

work), exploits a persistent representation including a number of distinct data structures. Its

core components are the Hybrid-Tree, containing the transactional data, and the Item-Index,

which complements the tree with additional, useful information. All of these structures are

stored together on the same binary file.

The Hybrid-Tree provides a prefix-tree representation of the original dataset, characterized

by the following features:

• each transaction is represented by a single path in the tree, from a root to a leaf;

• paths encoding different transactions can overlap when the transactions share a common

prefix;

• each node represents a single item and stores its associated local support, which equals

the number of all transactions sharing the node;

• items along a path are sorted by decreasing global support.

Depending on the original data distribution, this tree representation can significantly reduce

space requirements with respect to a dataset stored in plain text form: the denser the input

data distribution, the higher the level of compaction achieved.
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The Item-Index is an auxiliary structure enabling an item-based traversal of the tree. Because

our persistent representation does not address a specific mining algorithm but was conceived

to be as general as possible and support, in principle, any algorithm, it is crucial that many

different kinds of navigations be allowed throughout the tree. At the same time, only a few of

these algorithms require an item-based navigation of the tree; for this reason, it was deemed

convenient to separate the Item-Index structure from the Hybrid-Tree, so that the former can be

loaded on-demand as, and only when, needed.

3.1 The Hybrid-Tree

At an abstract level, the Hybrid-Tree is based on the FP-tree structure exploited by the FP-

growth mining algorithm previously described. Its physical organization, however, is different

from that of the FP-tree, because it is devised in such a way as to favor a disk-based exploitation.

Its main features comprise:

• bi-directional navigation;

• double layering;

• compact representation for contiguous nodes with unit support.

Table I reports a small dataset used as a running example, and Figure 1 shows the complete

materialized structure of the corresponding Hybrid-Tree and Item-Index. In the header table,

items have been sorted by decreasing global support. Each of them is linked to its own Item-

Index chain. Item-Index entries have been depicted using different colors for upper-layer nodes

(purple-violet squares) and lower-layer nodes (red-salmon squares). To avoid overcrowding the

design with arrows, only some node-link pointers have been represented.
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TID Items

T1 A, B, D, E, F, G, K, L

T2 A, C, D, G

T3 E, F, H, I, O

T4 A, B, C, D, E

T5 A, B, E, F, G, M

T6 C, E, F, S

TABLE I

EXAMPLE DATASET

3.1.1 Bi-directional navigation

The Hybrid-Tree can be traversed in both a top-down and a bottom-up fashion.

The bottom-up traversal is made possible by storing in each node the pointer to its parent

node.

The top-down traversal, on the other hand, was realized following a linked list approach.

More specifically, each node stores the pointer to its first child node and is linked to its next

brother, if any. Brother nodes can thus be reached by following the next-brother pointer, until

the end of the chain. This structure is well-suited for a disk-based environment, since nodes do

not need to store neither the pointers to nor the number of their children, and therefore have

a constant size.

In addition, the lists of brother nodes are sorted by decreasing global support of the items.

This requires a small extra computational effort, but provides a considerable benefit during the

creation phase and whenever a support-based operation is being performed on the prefix-tree.
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Figure 1. Materialization of an example dataset
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3.1.2 Double layering

In order to provide an effective and compact representation for diverse data distributions,

the Hybrid-Tree is characterized by two different node structures, which are kept in different

portions of the tree, or layers: the upper layer and the lower layer. The Hybrid-Tree double-

layering is illustrated in Figure 2.

Upper-layer nodes

A node is classified as belonging to the upper layer if the local support of the item it

represents is strictly greater than one. In this case, the node is shared by a relatively large

number of transactions and, as a consequence, it is included in the dense portion of the dataset.

Being located in the upper part of the tree, such nodes correspond to items with a high global

support and are thus likely to be frequently accessed during the mining process. For instance,

node 1 in Figure 1 is an upper-layer node.

Upper-layer nodes are full-fledged tree-node structures comprising:

• an item ID;

• its local support;

• composite pointers to the parent, first child and next brother nodes;

• the length of the chain of unit support children; the meaning of this field will become

clear in the following.

The upper node structure is depicted in Figure 3.
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Figure 2. The Hybrid-Tree layering
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Figure 3. Upper-layer node structure

Lower-layer nodes

The lower layer includes nodes whose local support is unitary. These nodes can have at

most one child, because they are not shared by multiple transactions, and hence a sub-path

starting from a unit support node is a chain of unit support nodes with no branches. As with

upper-layer nodes, the physical location of lower-layer nodes within the tree suggests that these

nodes typically associate with items with a low global support. For this reason, lower-layer

nodes are only read few times during the mining process. Lower-layer nodes are depicted in

yellow in Figure 1.

Yet, if the dataset is very sparse, the physical organization of these nodes on disk may

significantly impact performances in the mining phase. When these chains of unit support

nodes make up the majority of the tree, it is essential to group them together in the same layer.
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All lower-layer nodes having a local support equal to one and a single child, it is possible

to devise a smaller structure to represent them than it was used for upper-layer nodes. The

candidate structure shall be able to include:

• item ID;

• parent-child relationship.

There is no need to store the local support of the item, since it is implicitly one. As a con-

sequence, these nodes can be represented as integers and chains of lower-layer nodes can be

represented as arrays of integers; node contiguity in the sub-paths is thus given by cell conti-

guity in the arrays. The lower-layer node structure is depicted in Figure 4.

In order to link together sub-paths located in different layers and belonging to the same

path, a special sentinel node is employed. This node is the first in the unit support chain.

Hence, it is functionally a lower-layer node, but its data structure is a specialization of the

upper-layer node structure. In particular, being its parent an upper-layer node, the sentinel

node may have a brother node. Its unique child node is the first cell in the array representing

a sub-path of lower-layer nodes. The length of this array is stored in the childrenChainLen

field of the upper-layer node structure. For example, node 5 in Figure 1 is a sentinel node.

The latter field has a twofold meaning: on the one hand, it allows distinguishing sentinel

nodes (non-zero value) from normal upper-layer nodes (zero value); on the other hand, it is

used when a sentinel node is encountered to fetch the corresponding sub-path array by means

of a single disk read.
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Figure 4. Lower-layer node structure

While this technique is adequate for a top-down traversal, navigating these sub-paths in a

bottom-up fashion still seems critical. Loading nodes backwards one at a time from disk, until

the start of the chain is reached, would entail several (costly) read operations. Furthermore,

some kind of chain delimiter and a pointer to the sentinel node would be required. It has been

chosen, instead, to store the number of cells preceding each node, so that only that portion of

the array can be fetched at once. To avoid increasing the lower-layer node size, this information

is inserted in the Item-Index structure.

3.2 The Item-Index

The Item-Index is an additional structure providing support for item-based traversals. It

contains the node-link chains for each item in the Hybrid-Tree and is organized as a list of

arrays, each one containing as many entries as the number of tree nodes labeled with that item.
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Traditional FP-trees usually embed this information directly in the tree nodes, but we decided

to keep this structure separate from the Hybrid-Tree, so that only the data structures actually

needed by the adopted mining algorithm can be loaded in main memory.

Every Item-Index entry consists of a structure named NodelinkSmall storing:

• the local support of the corresponding node, and

• the composite pointer to the node’s parent.

This is to skip one disk access during the mining phase. The motivation is that some of the

mining algorithms exploiting item-based projections, such as FP-growth and LCM v.2, only

require the parental chain of items from the node to the root and the local support of the node,

but not the node itself.

For lower-layer nodes, the above still holds with a slight variation. Since the local support

of a lower-layer node is always unitary, the support field of the NodelinkSmall structure is

used for a different purpose: the number of nodes preceding the current one in the sub-path

array is stored instead of the support, as explained in Section 3.1.2. In addition, the composite

pointer field contains the address to the sentinel node of the unit support chain. Using these

two pieces of information, one can retrieve the portion of the chain, down to the item at stake,

with a single read operation.

The entry point to the Item-Index is inside the header table of the tree. For each item, the

latter contains:

• the item ID;
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• the item support;

• the length of the node-link chain;

• the starting offset of the node-link chain within the materialization file.

As it was the case with unit support node chains, an entire node-link chain can be fetched at

once, thus reducing the amount of I/O cycles.



CHAPTER 4

BUILDING THE HYBRID-TREE

The Hybrid-Tree relies on an optimized physical organization of data in order to provide an

efficient distribution-adaptive representation and ease data retrieval in the mining process. To

this aim, the most suitable data structures to store different portions of the dataset are selected

based on the local support of each node, as outlined in Chapter 3.

Unfortunately, this information is only known once the entire transactional dataset has

been converted into a prefix-tree. Creating a preliminary FP-tree in main memory is unfeasible

when no support threshold is enforced, because the size of such a tree would, in most cases,

far outstrip the available physical memory. As a consequence, this issue has been addressed by

creating a temporary disk-resident tree, hereinafter called G-tree.

This tree structure is then visited to assign each node a layer and a location in the final

tree. The Hybrid-Tree and the Item-Index are eventually written on disk.

4.1 The G-tree

The “growing” tree, or G-tree is a disk-resident FP-tree used as an auxiliary structure during

the creation of the Hybrid-Tree. It is built according to the traditional rules used to construct

an FP-tree, but its nodes are stored on disk.

It is a “growing tree” because it is incrementally built, as more transactions are added, by

inserting new nodes and updating the support count of existing ones.

29
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Once constructed, it serves two purposes:

• it enables choosing the appropriate physical structure for each node, according to its local

support;

• it stores the final position of each node in the Hybrid-Tree.

The latter information is not as crucial because it says where each node shall be written in the

materialization file – which could easily be done by computing its final position on-the-fly – as

it is because it specifies where its children and brother nodes are located. It would otherwise

be very challenging to set links between nodes within the materialized tree.

Owing to its growing nature, the G-tree tree must provide a high degree of flexibility. This

is achieved by means of versatile structures such as lists (in place of arrays), at the cost of an

increased disk space usage compared to the final tree.

4.2 Data pre-processing

Turning the transactional data into a prefix-tree structure would be a straightforward task,

were it possible to fit it in main memory. Unfortunately, this is not the case with large-sized

datasets. Dealing with the G-tree, on the other hand, raises a number of issues which typically

only affect secondary storage.

Because of the large number of updates each prefix-path can go through, it would be desir-

able to have nodes along the selfsame path written in contiguous disk locations. However, for

a given node, the number of its children, if any, is not known until they have been created, so

it is impossible to reserve contiguous space for them. Similarly, nodes with a low local support



31

are likely to be updated only few times throughout the creation process and could be handled

separately, but there is no way to know in advance whether a given node will have a high or a

low support once the tree is complete. It thus appears that the optimizations exploited on the

Hybrid-Tree do not hold for the construction of the intermediate tree.

In order to reduce the cost of this phase, a pre-processing step is performed prior to building

the G-tree. In particular, the input dataset is arranged in such a form that the chances that

the same tree path be reloaded multiple times just to increase its support are minimized.

4.2.1 Preliminary steps

As a preliminary step, the entire dataset is read once. For each transaction, newly found

items are inserted in an ad-hoc structure, while the support of previously found items is updated

accordingly. Items are then sorted by decreasing global support and pruned of infrequent ones.

A unique and progressive ID is finally assigned to each item, in descending order of support.

By means of a second dataset scan, each transaction is read again. Items in every transaction

are remapped using their new IDs and sorted by ascending order of ID. This is equivalent to a

descending order of support count: in a transaction, item x precedes item y if and only if the

frequency of x is greater than or equal to the frequency of y. The remapped dataset is written,

transaction by transaction, on a temporary file.

Finally, transactions are sorted in lexicographic order, that is, for any two transactions Ti

and Tj , Ti < Tj (i.e., Ti precedes Tj in the final ordering) if and only if Ti and Tj agree on

the first k ≥ 0 items and the frequency of the (k + 1)-th item in Ti, if any, is greater than the

frequency of the (k + 1)-th item in Tj .



32

Because of this total order defined on the transaction set, transactions sharing the same

prefix-path are contiguous: as a consequence, only the last accessed tree path may need to be

updated when a new transaction is inserted. This means that, once a transaction with a new

prefix is found, the previous blocks of the tree are sure not to be used anymore, saving on

I/O costs. Moreover, the first transactions to be processed are the ones containing the most

frequent items, whose nodes will thus be allocated sequentially.

On the whole, transaction sorting allows a significant speed-up and produces a better orga-

nization of the G-tree on disk.

The sorting strategy employed for this task will be described in the following section.

4.3 Sorting the dataset

As previously outlined, the sorting phase plays a fundamental role in the process of creating

the G-tree on disk. However, it needs to be carefully devised, lest it become the most time-

consuming one.

Due once again to the large size of the datasets that we intend to materialize with this

persistent representation, transactional data cannot be fully memory-resident during this task.

It is therefore necessary to adopt a partitioning strategy of some sort.

4.3.1 The Linux sort command

In the early development stage of the disk-based framework, the Linux sort command

was exploited to perform the initial sorting step. The sort utility, implemented on all POSIX

systems, reads one or more text files (or the standard input) and sorts their lines in lexicographic

order, or according to whatever order is specified on the command line.
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Since this utility is intended to be able to deal with large files, the adopted sorting strategy

is an external R-way merge sort. This means that the input file is initially split into a number

of equally-sized chunks, which are sorted in main memory and written on disk. The size of the

initial chunks is chosen based on the available physical memory. Chunks are then recursively

merged R at a time until a single fully sorted file is obtained.

The default behavior is to sort the input file using entire lines of text as keys and following

an ASCII lexicographic order, but sort can also be instructed to identify key fields within

each line and, optionally, to treat them as numbers instead of strings. The correct way to sort

transactions (according to the order described in Section 4.2.1) is by means of the following

command:

sort remapped-file.txt -n -k1 -k2 -k3 ... > sorted-file.txt

The above line means that several blank-separated fields, namely items (-k1 -k2 -k3 ...

options), are present in each line and that they should be considered as numbers (-n option).

Shortcomings

Although reportedly efficient in a variety of applications, the sort utility revealed poor

performance in the specific case of transactional dataset sorting.

One possible reason for this can be identified with the large amount of disk reads that take

place when the merged partitions cannot be accommodated in main memory. The merge-sort

approach works well as long as all the recursive merge steps can be carried out in main memory.

If this is not the case, the algorithm starts swapping to disk. Since multiple steps are required

to merge all the (increasingly large) chunks into a sorted file, this translates to portions of the
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dataset being continuously read from and stored on disk, which negatively impacts execution

times. With very large datasets, the majority of time is spent with I/O operations and this

approach becomes unfeasible.

A further cause of slow-down is the fact that the algorithm operates on text files. Data

to be sorted and merged is always stored in the form of strings and, every time a comparison

is made, text-to-number conversion must be explicitly carried out. This results in a relevant

fraction of the CPU effort being spent only with data-type conversions and, eventually, in long

execution times.

4.3.2 Proposed sorting algorithm

The general idea behind the proposed sorting algorithm relies on the divide and conquer

algorithmic paradigm again. Its major accomplishment is that of splitting the sorting step into

a number of independent sorting tasks, so that no merging is ever required, thus saving on I/O

costs.

The adopted strategy partitions the dataset into disjoint chunks, defining a partial order on

the set of transactions and a total order on the set of chunks.

More in detail, given any two chunks Ci and Cj such that Ci < Cj (i.e., chunk Ci precedes

chunk Cj in the total order defined on the set of chunks), any transaction Tik belonging to

chunk Ci precedes any transaction Tjk belonging to chunk Cj in the partial order defined on

the set of transactions, and hence also in the total order.
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In order to split the dataset into chunks, an initial scan is performed to count the number

of transactions starting with each item. Sets of transactions starting with the same item will

be hereinafter referred to as “first-item projections”.

The contents of each chunk (i.e., the set of first-item projections it includes) are then

computed by scanning the counts obtained in the previous step. First-item projections are

assigned to the current chunk, while contextually updating the number of transactions currently

contained in the chunk, until it is full. This is done in such a way that no first-item projection

ever spans across multiple chunks, so as not to violate the partial order previously discussed.

The dataset is then read a second time and transactions are inserted in their assigned chunks,

stored as separate files on disk. Chunks are then iteratively fetched from disk into memory,

sorted independently of each other using the quicksort algorithm and written back to disk in

sequence. Thanks to the aforementioned property, the resulting file will be completely sorted.

A brief outline of this procedure is provided in Algorithm 1.

Time complexity

Besides reducing the time required to perform the sorting step by several orders of magni-

tude, this strategy scales very well with large datasets, because it has a linear complexity in

their size.

Let us consider a dataset D containing n transactions. Let us also assume that fixed-size

partitions containing p transactions each are being employed.
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Dataset scans have a cost proportional to its size; we may assume different proportionality

constants for the two scans, since the dataset is read in the one case (with unit cost k1) and

read and written at the same time in the other case (with unit cost k2).

The cost of computing the contents of each chunk depends on the number of different items

occurring in the first position; this value is upper-bounded by the number of distinct items in

the dataset and does not depend on the dataset size, so it can be considered constant.

Finally, the quicksort algorithm has a p log p complexity, p being the fixed partition size,

and it is applied to every partition, which needs to be loaded from (with unit cost k3) and

stored back (with unit cost k4) to disk. Summing up:

C(n) = k1n+ k2 + k3n+
n

p
(k4 + p log p) = Θ(n)

Implementation notes

Some implementation details that turned out beneficial are explained hereinafter.

One of the differences with respect to the sort utility is that the proposed algorithm operates

directly on binary data. This is the format used to represent and process transactions inside

the disk-based framework and it is the most natural one, since each transaction can be simply

stored in array form. Consequently, the remapping step (described in Section 4.2.1) has been

modified so as to produce a binary file instead of a text one. Reading such a file is faster,

because no character parsing is required. In addition, because the output sorted file is binary,

I/O and processing cost reduction also affects the subsequent G-tree creation phase.
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The remapping now also integrates the preliminary step of the sorting algorithm, namely

the first-item occurrence counting. This is obtained at virtually no cost, but permits one less

dataset scan.

Finally, in order to minimize the number of disk accesses during the dataset splitting phase,

buffers have been directly handled, without resorting to the buffering mechanism provided by

the standard C library I/O functions. This is particularly critical with very large files: since

many partitions are produced, continuous shifts from one to another to write small amounts of

data would dramatically impact performance.

4.4 Building the G-tree

4.4.1 Chunk-tree

The pre-processing step provides a considerable benefit to the creation of the disk-based

G-tree. In order to further improve this process, another module is chained to the data pre-

processor.

To reduce the I/O cost, the sorted transactional dataset is split again into equally-sized

chunks. One chunk at a time is considered and a temporary FP-tree, named a chunk-tree, is

built in main memory. The chunk-tree is then merged with the current G-tree on disk and is

finally discarded.

The merging step is carried out by visiting in a depth-first order both the disk-resident tree

and the chunk-tree at the same time. The I/O reduction is due to the fact that each node of

the G-tree is read at most once during the merge of a single chunk-tree, to update its support

count or create new children or brother nodes. These operations correspond to the processing of
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Algorithm 1 Dataset sorting algorithm

procedure DatasetSort (D: database ;
I : i tems ;
S : so r t ed database ) i s

constant p a r t i t i o n S i z e ;

begin
−− count f i r s t item occurrences
for item i in I do

f r equency [ i ] := 0 ;
end for ;
for t r a n s a c t i o n t in D do

f r equency [ t . f i r s t I t e m ] := frequency [ t . f i r s t I t e m ] + 1 ;
end for ;

−− compute t a r g e t p a r t i t i o n f o r each f i r s t −i tem
numPartit ions := D. s i z e / p a r t i t i o n S i z e ;
p a r t i t i o n s := new P a r t i t i o n [ numPartit ions ] ;
for n in 1 . . numPartit ions do

p a r t i t i o n s [ n ] . a v a i l a b l e := p a r t i t i o n S i z e ;
end for ;
cu r r ent := 1 ;
for item i in I do

i f f r equency [ i ] > p a r t i t i o n s [ cur rent ] . a v a i l a b l e then
cur rent := cur rent + 1 ;

end i f ;
p a r t i t i o n s [ cur rent ] . a v a i l a b l e :=

p a r t i t i o n s [ cur rent ] . a v a i l a b l e − f r equency [ i ] ;
itemGoesTo [ i ] := cur rent ;

end for ;

−− s p l i t d a t a s e t
for t r a n s a c t i o n t in D do

ta rge tPar t := itemGoesTo [ t . f i r s t I t e m ] ;
p a r t i t i o n s [ ta rge tPar t ] . wr i teOnFi le ( t ) ;

end for ;

−− s o r t p a r t i t i o n s
for n in 1 . . numPartit ions

chunk := p a r t i t i o n s [ n ] . readFromFile ( ) ;
s o r t ( chunk ) ;
S . wr i teOnFi le ( chunk ) ;

end for ;
end DatasetSort ;
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multiple transactions which, without the intermediate chunk-tree, would have required several

I/O cycles.

The preliminary sorting of the transaction set maximizes the chances that transactions

within a given chunk share many prefix-paths, and hence the compression achieved by the

chunk-tree, thus minimizing the number of updates on the G-tree nodes. Furthermore, at most

a single chunk-tree path can overlap with one existing temporary tree path. This occurs when

transactions sharing the same prefix are at the border between two consecutive chunks. This

way, only a very limited portion of the G-tree is rewritten during the creation process.

4.4.2 Very Infrequent Speculation

In addition to the processing described so far, a special technique has been employed to

reduce the interleaving of infrequent nodes with the frequent ones, relying on the assumption

that high-support nodes are more prone to be accessed than low-support ones.

This technique mimics the one adopted to distinguish between upper-layer nodes and lower-

layer nodes in the final Hybrid-Tree, but it exploits a different metric: since the local node

support is not yet available, an estimate is performed based on the global item support. This

value is known as soon as the header table is computed. Item supports are thus compared to a

user-specified percentage of the average item support. Nodes whose item support is lower than

this threshold are associated to infrequent items and are stored in the last regions of the disk

space used during the creation phase, so as to keep them separate from the high-support ones.

The advantage is that allegedly frequently accessed nodes are stored in adjoining disk locations,

reducing I/O times.
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4.5 Building the final Hybrid-Tree

Once the process of creating the G-tree on disk is complete, a number of depth-first visits

are performed to retrieve statistical information, select the appropriate structure for each node

and write the final Hybrid-Tree in the materialization file along with the Item-Index.

4.5.1 First G-tree visit

During the first G-tree visit, a layer of the final tree is chosen for each node. Nodes whose

parent node has a unitary support are assigned to the lower layer, while the remaining nodes

are assigned to the upper layer. This ensures that sentinel nodes are inserted in the upper layer.

A count is kept for each type of node and it is used at the end of the process to compute an

optimal size for the materialized file page.

This step is aimed at minimizing the amount of disk space that is wasted in each page,

especially the last one. Because of the memory mapped I/O mechanism exploited to load

portions of the tree in main memory during the mining phase, the tree page size is required

to be a multiple of the OS memory system page. In addition, all pages need to be entirely

written on disk, regardless of the actual number of nodes they contain, thus possibly wasting

large amounts of space in the last page. As a consequence, tuning the page size to best fit

the actual space requirements can reduce the materialized file size. This is particularly evident

with small- and medium-sized datasets, where the orders of magnitude of used and wasted disk

space are comparable.
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The actual tuning is performed by means of a simple minimum-search algorithm: possible

page size values are explored in sequence and for each of them the corresponding disk space

waste is computed. The page size yielding the minimal waste is then selected.

4.5.2 Second G-tree visit

In the second G-tree visit each path is traversed in depth-first order again. Nodes belonging

to the upper layer are assigned a position in the final materialization; this information is stored

inside the G-tree nodes and used later during the write phase. Instead, lower-layer nodes are

directly written on disk, since they do not need to store child, parent or brother pointers.

At the same time, node-link chains are created for either type of nodes and stored in a

temporary file on disk.

4.5.3 Item-Index optimization

The node-link chain structures obtained after the second tree navigation are not very well-

suited to be directly integrated in the materialization, mainly owing to the large amount of disk

space they take up. As each node-link entry needs to store the node support and the composite

pointer to its parent, this structure has an overall size of 12 bytes. Although smaller in size

than an upper-layer node (which takes 28 bytes), a node-link entry is bigger than a lower-layer

node, which occupies only 4 bytes. Since the latter type of nodes usually makes up the vast

majority of the tree, this results in the node-link chains being larger than the Hybrid-Tree itself.

Therefore, some techniques to reduce their size have been designed and implemented:

• a differential coding scheme to represent Hybrid-Tree page references;

• “virtual” Item-Index pages larger than Hybrid-Tree pages;
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• normalized bit-field pointers to maximize packing of information.

Differential coding

The first optimization concerns the composite-pointer page field. In order to reduce the

number of bits required to represent this value, a differential page numbering scheme has been

adopted. In other words, the page field does not contain a page number: the difference with

respect to the page number of the previous entry is stored instead. The assumption is that this

difference can be represented on a smaller amount of bits than the page number itself.

When the chain is retrieved from the Item-Index in the mining phase, absolute page numbers

are computed back by adding the stored values in sequence.

A potential downside to this approach is that, in order to obtain the page number of the

n-th entry, it is necessary that all n − 1 previous values be computed as well. However, since

node-link chains are always read in whole and following their sequential order, this is not a real

disadvantage.

During the node-link optimization phase, each chain is preliminarly fetched from disk and

sorted by increasing page number. As a matter of fact, the temporary chains are obtained by

means of a depth-first visit, and the same order is followed when allocating nodes in the final

tree; however, since parent pointers, and not pointers to the nodes themselves, are stored in

the chain, this kind of visit cannot always guarantee the increasing order of page numbers –

although this holds in the majority of cases. A sorting step is therefore required to ensure that

adjacent node-link cells have increasing page numbers.
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After that, each node-link chain is processed one cell at a time and encoded according to

the differential scheme previously described.

This technique slightly increases the computational effort required to read and, especially,

write the node-link chains (because of the sorting operation), but it allows halving the size of

the page field (from 16 bits to 8 bits).

Virtual Item-Index pages

The differential coding scheme just described has a shortcoming. In particular, because the

difference with respect to the previous page number is represented on 8 bits, the maximum

gap between two adjacent node-link cells can be at most 254 pages (value 255 is reserved to

represent the UNDEFINED PAGE value).

The entity of this limitation depends on the size chosen for the Hybrid-Tree pages. Since in

practice it is not convenient for the mining process to choose very large pages, this limit can

become substantially low. When dealing with large datasets, nodes labelled with the same item

can be spread across several gigabytes and their distance may exceed the maximum value that

can be represented on 8 bits. In such cases, the differential scheme would fail to compress the

node-link chain.

In order to widen the capabilities of the differential coding technique, a “virtual” paging

scheme has been introduced in the Item-Index. As a consequence, the page sizes in the Hybrid-

Tree and in the Item-Index no longer need to be identical. The Hybrid-Tree page size can thus

be tweaked to yield the best performance in the mining phase, while a larger Item-Index virtual

page size may be chosen so as to enable the differential scheme to deal with node-link chains
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on large datasets. When creating the Item-Index, composite pointers referring to small-sized

tree pages are remapped to the larger index pages: multiple tree pages are thus represented in

the Item-Index by means of a single page, thus extending the maximum distance between two

contiguous nodes.

An example will clarify this concept. Let us assume that pages in the Hybrid-Tree have a

size equal to SHT bytes. If we are to use the same page size within the Item-Index and exploit

the differential coding scheme, the gap between the physical locations of the nodes referenced

by two contiguous node-link cells is allowed to assume values in ]0, 255 · SHT [ bytes. On the

other hand, exploiting the virtual paging scheme with an Item-Index virtual page size equal to

SII = kSHT , k ∈ Z+
0 , such gap is now in range ]0, 255k · SHT [ bytes, which is k times larger

than before.

In order to reduce the number of multiplications and divisions, k is chosen to be a power of

2, so that such operations can be performed by means of bit shifts.

Normalized bit-field pointers

A further optimization has been performed on the composite-pointer offset field. In partic-

ular, this field is used to carry the relative address of parent nodes within their corresponding

page. Since the referenced parent node is an upper-layer node for upper-layer nodes and a sen-

tinel node (i.e., still an upper-layer node) for lower-layer nodes, this value is always a multiple

of the upper-layer node size. It is thus possible to normalize it with respect to this size, so as

to reduce the number of bits needed to store it.
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As a consequence, real pointer values are normalized with respect to the upper-layer node

size during the Item-Index creation phase, and the reverse step is performed upon decoding

Item-Index chains. The normalized offset value can thus be represented on 24 bits instead of 32.

A data type with such a bit-width is somewhat unusual and is not provided by the C/C++

programming languages. It has been implemented as a combination of 16-bit and 8-bit data

types. Furthermore, to avoid shift and/or bit-mask operations, a helper-pointer type has been

created, resorting to a C union: the normalized offset value is thus assigned to an auxiliary

helper-pointer variable and its low- and high-order parts are retrieved by simply accessing

ad-hoc union fields.

Thanks to the combination of these techniques, the Item-Index can be eventually compressed

by 33%; in addition, because both the creation process and the mining phase are largely I/O-

dominated, none of the operations required by the compression and decompression steps no-

ticeably impacts performance.

4.5.4 Hybrid-Tree serialization

As the last step, the disk-resident G-tree is traversed a third time in a depth-first order.

Nodes along each prefix path are written on disk in the contiguous locations assigned during

the second traversal. Links to parent, first child and next brother nodes are established by

accessing the corresponding G-tree nodes and retrieving their allotted positions in the final

tree.
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4.6 Materialization format

The final materialization is stored on a single binary file, comprising a number of different

structures:

• a materialization descriptor, summarizing the features of the tree;

• a header table for the prefix tree, containing a list of all items with their support and

entry point to the Item-Index;

• a remapping table;

• the Item-Index;

• the Hybrid-Tree.

The format of the materialized representation is depicted in Figure 5.

The Hybrid-Tree structure is further divided into pages, stored sequentially in the materi-

alization file. This provides fine-grained access to the tree, because each page can be inde-

pendently fetched from disk and loaded into main memory by exploiting the BufferCache data

access framework, as explained in Section 5.2.

4.6.1 Physical organization

The physical organization of the Hybrid-Tree on disk has been designed to reduce the number

of disk reads performed during data retrieval.

Support-based projections are commonly exploited by a number of frequent itemset mining

algorithms. In order to extract such projections from a prefix-tree representation, a top-down

depth-first visit needs to be performed. Item-based traversals, made possible by the Item-Index,
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Figure 5. Materialization format
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are just as common; they involve navigating all paths including a given item in a bottom-up

way, to retrieve items along the way to the root, and, optionally, in a top-down way.

Based on these observations, nodes along each path are written on disk in adjacent physical

locations by means of a depth-first visit, so as to maximize their contiguity and speed up vertical

navigations.



CHAPTER 5

DATA ACCESS FRAMEWORK

The process of creating the Hybrid-Tree on disk and that of extracting useful information

from it by means of mining algorithms are very I/O-intensive tasks. Due to the large amounts

of data to be transferred from secondary storage into main memory and viceversa, optimizing

the data access framework is vital to minimize the impact of I/O operations on the overall

execution times.

To this aim, possible data access strategies have been analysed in Section 5.1 to identify

their pro’s and con’s. The I/O framework implemented to access both the G-tree and the

Hybrid-Tree is described in Section 5.2.

5.1 Possible I/O approaches

As outlined in (?), the low level data access can be carried out resorting to three main

strategies:

• the standard I/O library (fopen, fread, fwrite, fseek);

• the UNIX I/O system calls (open, read, write, lseek);

• memory-mapped I/O.

49



50

5.1.1 The standard I/O library

The standard I/O library is specified by the ISO C standard because it has been implemented

on a number of operating systems other than the UNIX System. For this reason, it provides

the best portability among different platforms.

The standard I/O library handles issues such as buffer allocation and performing I/O in

optimal-sized chunks, obviating our need to worry about such details. This makes the library

easy to use but, on the other hand, introduces another set of problems. In particular, the

different ways buffering is handled, depending on the type of stream, can generate confusion.

The major drawback of this approach, however, is the performance degradation it can

introduce. In order to perform I/O operations, standard I/O library functions use an internal

buffer whose size is by default very small. Because these functions rely on the OS’s system

calls to carry out the actual reading or writing task, this results in a large number of system

call invocations, with significant additional overhead. Data is in some cases copied twice,

from the kernel buffer to the library function buffer, and from the latter to the user buffer.

Moreover, these functions conflict with the Virtual File System (VFS) buffers slowing down

reading performance when disk pages are already virtualized by the operating system.

As a consequence, the C library functions are not a good choice to perform I/O of large

amounts of data.
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5.1.2 UNIX system calls

Compared to the previous approach, the use of the UNIX system calls can considerably

reduce I/O times when large files are involved, due to the presence of a single, kernel-space

buffering mechanism which enables reading one or more disk blocks at once.

The family of system calls (e.g., read) only uses the kernel VFS, which causes a low perfor-

mance during the first reading, but speeds up all further read operations. As far as the writing

phase is concerned, the write primitive is quite poor, having no support for delayed/asyn-

chronous output.

5.1.3 Memory-mapped I/O

The memory mapping mechanism represents in many cases the most flexible choice for both

reading and writing. A memory-mapped file is a segment of virtual memory which has been

assigned a direct byte-for-byte correspondance with some portion of a file or file-like resource.

This resource is typically a file that is physically present on disk, but can also be a device,

a shared memory object or another resource that the operating system can reference through

a file descriptor (in a UNIX environment) or a handle (in a Windows system). Most modern

operating systems or runtime environments support some form of memory-mapped file access.

Memory-mapped I/O provides a versatile access to data. Programs exploiting memory-

mapped file access can maintain dynamic data structures conveniently stored in permanent

files and do not need to concern themselves with the movement of data between the file and the

memory, which is handled by the operating system. There is thus no need to manage buffers,
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and efficient in-memory algorithms can process file data, even though the file may be much

larger than available physical memory, just as if they were operating in main memory.

In addition to the flexibility, using memory-mapped files provides increased I/O performance

than direct read and write operations for the following reasons:

• system calls entail a large overhead and are orders of magnitude slower than a simple

change of program’s local memory;

• in most operating systems, the memory mapped region is actually the kernel’s file cache,

meaning that no copies are created in user space. Using system calls would inevitably

involve the time-consuming operation of memory copying;

• since the memory-mapped file is handled internally in pages, sequential readings on a file

require disk access only when a new page boundary is crossed, and writing large portions

of the file on disk is performed in a single operation;

• applications can access and update data directly and in-place, as opposed to seeking from

the start of the file or rewriting the entire edited contents to a temporary location.

A further possible benefit of memory-mapped files is the “lazy loading” technique, which

saves significant amounts of RAM even for large-sized files. As a matter of fact, trying to load

the contents of a file in whole can cause severe thrashing when the file is considerably larger than

the amount of memory available: the operating system starts reading from disk to memory, but

it will eventually end up simultaneously swapping from memory back to disk. Thanks to the
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lazy loading, not only may memory-mapping completely bypass the page file, but the system

will selectively load only those smaller page-sized sections of the file which are being edited.

These operations are handled by the virtual memory manager, which is the same subsystem

responsible for dealing with the page file. Memory-mapped files are loaded into memory one

entire page at a time, the page size being selected by the operating system for maximum

performance. Since page file management is one of the core elements of a virtual memory

system, loading page-sized sections of a file into physical memory is typically a highly optimized

system function.

As a result, memory-mapped I/O often performs better than the other techniques. This

approach, however, has its cost in page faults, which occur whenever a piece of data is required

belonging to a block that has not yet been fetched from disk. Depending on the number of

page faults, memory-mapped I/O can actually become substantially slower than standard file

I/O. In order to reduce the chances of such an event, data should be stored in memory-mapped

files trying to cluster blocks that will be read at the same time. In this respect, the depth-first

serialization of the Hybrid-Tree is highly beneficial.

5.2 The BufferCache framework

The memory-mapped I/O approach has been selected over the C library and the UNIX

system calls as the preferred data access method for this framework, which has its core in the

BufferCache object.

The BufferCache is an object-oriented structure that carries out a role similar to the one of a

DBMS buffer cache. It is exploited to access the nodes of the G-tree during the materialization
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phase and those of the Hybrid-Tree during the mining process. These nodes are grouped in

pages, each one called a MappedRegion. The BufferCache allows keeping a certain number of

regions in memory, while directly managing the swap-in/swap-out of the other ones, according

to frequency and chronology of accesses.

5.2.1 Memory-mapped areas

Each MappedRegion represents a mapped area of the materialization file. The MappedRegion

is an object including the following pieces of information:

• the starting offset within the mapped file;

• a pointer to the mapped area;

• a collection of helper methods to manage the wrapped data.

Because the BufferCache is very likely to deal with files whose size exceeds 2 GB, it is necessary

that the source code be compiled with the large file support. This way, the offset pointer is

specified on 64 bits and is thus able to address files larger than 2 GB, even on 32-bit architec-

tures.

In the initialization phase, a region inside the file is memory-mapped by invoking the mmap

system call. The latter returns a pointer inside the process addressing space; this pointer will

be used to access data within that disk region.

Special composite pointers are exploited to address the G-tree and Hybrid-Tree nodes, made

up by two different references:

• a region number (16 bits);
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• a relative pointer (32 bits), which corresponds to the offset inside the region.

Whenever a pointer to a node of the tree is needed, the BufferCache executes the following

procedure:

1. it checks whether the addressed page is currently in memory;

2. if not, it loads it from disk, possibly swapping out the least used region;

3. it computes the real pointer by summing up the base address of the region and the relative

pointer.

5.2.2 Swapping controller

The number of memory-resident regions is upper-bounded by a user-specified parameter

(and by the available physical memory, of course!), while the decision to keep in or swap some

of them out of RAM is taken by the BufferCache controller. This choice depends on two

parameters:

• frequency of access to each region;

• chronology of access.

As a consequence, the more frequently a region is accessed, the higher the chances to keep (and

hence to find) it in main memory.

To avoid multiple swaps of newly accessed areas, which are likely to be accessed a lot of

times in the near future, the last swapped-in region is never discarded to make room for a new

one, even if its access count is low.
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The combination of these two parameters ensures a fair behavior of the BufferCache in the

majority of cases.

5.3 Data access primitives

The LSD framework can support in principle any itemset extraction algorithm. Depending

on the the enforced support threshold and the selected algorithm, a different portion of the

materialized structure should be accessed. To support the tightly-coupled integration of the

LCM v.2 mining algorithm, as described in Section 6.3, frequent-item projections must be

extracted from the Hybrid-Tree. To this aim, two data access primitives have been developed:

• the Item-Index decompression primitive;

• the GetDenotation primitive.

5.3.1 Item-Index decompression primitive

This data access method can be exploited to retrieve data from the Item-Index and convert

it into a usable form. Because of the compression technique adopted to compact the Item-Index

chains, it is not possible to load this structure from disk into main memory and directly exploit

it. The Item-Index decompression primitive takes care of the decompression phase in a seamless

way and returns the node-link chain for a given item in an array form.

The primitive is invoked along with a parameter representing the item whose node-link

chain shall be extracted. The header table of the materialization is accessed and the offset of

the corresponding chain is read.
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After that, the full compressed chain is loaded from disk. The decompression algorithm is

subsequently applied and the uncompressed chain, containing standard composite pointers, is

recreated in main memory. Because node-link chains are usually traversed one at a time and

then discarded, they can be kept in memory in an uncompressed form, so that the decoding

step is performed only once and the chain can then be navigated in any order.

5.3.2 GetDenotation primitive

The frequent-item projection of the dataset with respect to an arbitrary item α includes the

transactions where α occurs, intersected with the items having higher support than α or equal

support but preceding α in lexicographical order. Items along Hybrid-Tree paths are sorted by

descending support and lexicographical order. As a consequence, the frequent-item projection

is represented by the Hybrid-Tree prefix paths of item α (i.e., the subpaths from the roots to

the nodes labelled with α).

The GetDenotation data access method reads the frequent-item projected database from the

Hybrid-Tree. First, the Hybrid-Tree nodes including item α must be identified. To this aim, the

Item-Index and the corresponding access primitive are exploited. Then, for each node, its prefix

path is traversed by means of a bottom-up visit, following node parent pointers, until a tree

root is reached. In the case where the node referenced by the node-link chain is a sentinel, the

lower layer of the Hybrid-Tree shall also be accessed. All items comprised between the sentinel

node and the node containing α are read by means of a single operation.
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Once read, prefix paths are stored in an in-memory representation. In each prefix path,

node supports are normalized to the node support of item α in the subpath, because only

transactions including α must be taken into account.

The GetDenotation primitive has been optimized to enhance performance when many item-

based projections must be sequentially extracted from the Hybrid-Tree. The node-link chain

navigation is in fact carried out by inverting the direction at every iteration. Based on the

fact that node-link chains are sorted by increasing tree page number, this technique tries to

maximize the temporal locality of data accesses between contiguous iterations. Tree pages that

were used last in the previous iteration have higher chances of still being in the BufferCache

than pages that were used at the start of the iteration. As a consequence, starting the traversal

from the tree portion that is still in memory avoids some disk reads and increases data re-use.

The GetDenotation primitive is illustrated in Algorithm 2.



59

Algorithm 2 Outline of the GetDenotation primitive

procedure GetDenotation ( i : item ) i s
begin
−− p r o j e c t i on database
P := ∅ ;

chain = GetNodelinkChain ( i ) ;

for j in 1 . . s i z e ( chain ) do
t := ∅ ; −− curren t t r an sac t i on
parent = chain [ j ] . getParent ( HybridTree ) ;
i f parent . chi ldrenChainLen > 0 then
−− node i s a s e n t i n e l

l en = parent . chi ldrenChainLen ;
t := t ∪ ReadChildren ( l en ) ;
supp := 1 ;

else
supp := chain [ j ] . support ;

end i f ;
while parent not null do

t := t ∪ parent . id ;
parent := parent . getParent ( HybridTree ) ;

end while ;
t . m u l t i p l i c i t y := supp ;
P := P ∪ t ;

end for ;

return P;
end GetDenotation ;



CHAPTER 6

MINING ALGORITHM INTEGRATION

Frequent itemset mining can be carried out by exploiting existing mining algorithms, prop-

erly fed with the transactional data extracted from the Hybrid-Tree. Thanks to the omni-

directional traversal provided by this structure, it would be possible, in principle, to support

any mining algorithm.

Two main integration approaches can be followed.

The first approach is the least invasive for the mining algorithm. It consists in exploiting

the disk-based tree as a pre-processing module: transactional data can be extracted from it for

any mining threshold, providing a compact and pruned representation of the original dataset.

The in-memory mining algorithm does not require any modification, but it is now able to

exactly allocate its performing memory-resident data structures, thus reducing its main memory

requirements. The scanning and pruning phases are, in fact, the memory hungriest ones and

hence one of the major bottlenecks of traditional mining algorithms. Performing this task

by means of the Hybrid-Tree makes it possible to mine larger datasets and for lower support

thresholds.

The second approach requires a modification of the mining algorithm and can affect the

way the transactional data is retrieved from the tree and passed to the mining algorithm. In

the previous case the entire dataset was extracted in a pruned form and sent to the mining

algorithm in whole. In contrast, the alternative approach lies in selectively loading specific

60
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portions of the dataset only when needed. These portions can be chosen according to different

criteria, depending on the type of traversal required by the mining algorithm we are trying to

integrate. For this reason, a deeper knowledge of how the algorithm itself operates is required.

Both approaches have their advantages and drawbacks. The former approach is the simplest

to implement, but also the first to fail when mining of huge datasets is addressed. The reason

is that even the pruned dataset extracted from the tree may at some stage not fit in main

memory, thus making the memory-based mining process impossible. The latter approach is

likely to overcome this limitation, at the cost of an increased integration complexity. The LCM

v.2 algorithm has been integrated following this strategy.

6.1 LCM: an overview

As described in (3), LCM v.2 is an efficient, linear-time itemset mining algorithm that

currently outperforms all other state-of-the-art approaches. Its driving forces are the exclusive

use of array-based structures and a suite of clever techniques which reduce the computation

time efficiently.

The basic idea of the algorithm is a depth-first search. Let us consider a dataset T =

{t1, t2, . . . , tm}, ti being the i-th transaction in T . We define the denotation of an itemset

P , and note it as T (P ), to be the subset of transactions in T containing itemset P , namely

T (P ) = {tj ∈ T |P ⊆ tj}. Further, we denote the largest item (i.e., the item with the highest

frequency) of an itemset P by tail(P ).

LCM first computes the frequency of each itemset composed of one item. If an itemset

I = {i} is frequent, then it enumerates frequent itemsets obtained by adding one item to {i}.
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Algorithm 3 Trivial implementation of DFS frequent itemset mining

procedure FrequentItemsetMine (D: database ; I : i t emset ) i s
begin

OutputItemset ( I ) ;
for j in t a i l ( I )+1 . .N do

i f I ∪ {j} i s f r equent then
FrequentItemsetMine (D, I ∪ {j} ) ;

end i f ;
end for ;

end FrequentItemsetMine ;

procedure Mine i s
begin

FrequentItemsetMine (D, ∅ ) ;
end Mine ;

In this way, LCM can recursively enumerate all frequent itemsets. In order to split the search

space in non-overlapping partitions, and hence avoid computing duplicate itemsets, only items

j > tail(I) (i.e., more frequent than i, in this case) are considered.

A straightforward implementation of this approach in given in Algorithm 3. However,

such an implementation is very slow, because computing the frequency of I ∪ {j} requires an

entire pass over the input dataset. In order to speed up this computation, LCM resorts to the

conditional database and occurrence deliver techniques.

6.1.1 Conditional database

The conditional database is the first enhancement introduced by LCM which signficantly

contributes to speeding up the mining process. The conditional database of itemset I cor-

responds to its denotation T (I), after additionally removing all unnecessary items from each
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transaction and merging all identical transactions into one. An item j is considered unnecessary

provided that it satisfies one of the following conditions:

1. |T (I ∪ {j})| < suppThreshold (it is included in less transactions than the user-specified

threshold);

2. T (I ∪ {j}) = T (I) (it is included in all transactions containing in I);

3. j < tail(I).

Once the conditional database has been constructed, the frequency of I ∪ {k}, k > tail(I), is

the same in both the original and the conditional database. As a consequence, LCM uses the

latter, rather than the former, in the recursive call with respect to I.

6.1.2 Occurrence deliver

The occurrence deliver technique is an efficient method to compute the denotation of an

itemset.

Occurrence deliver is able to find the denotations of all itemsets P ∪ i at once, where P is

initially the empty set and i is any item such that i > tail(P ). To this aim, an array-based

structure containing a bucket for each possible item is exploited; buckets are initialised to the

empty set. The conditional database of the dataset with respect to P is scanned once, transac-

tion by transaction and, for each item i > tail(P ), the ID of the corresponding transaction is

inserted into the item bucket. At the end of this process, each bucket i contains the denotation

of itemset P ∪ {i}.



64

In order to recursively compute the denotation of the itemsets obtained by adding new

items, it is sufficient to replace P with S = P ∪ {i}, calculate the conditional database and

repeat the above operation.

This procedure is linear in the sum of the sizes of the transactions included in the conditional

database and it is one of the key routines of the LCM algorithm.

6.2 LCM technicalities

This section aims at providing a more in-depth view on the LCM implementation, useful to

understand how this algorithm can be tightly integrated in the Hybrid-Tree framework.

6.2.1 Pre-processing

Most frequent itemset mining algorithms need to perform some pre-processing steps on the

input dataset, prior to the actual mining phase, and LCM is no exception.

The original, plain-text dataset is initially scanned once to count the number of transactions

and the frequency of each distinct item it includes. Infrequent items are pruned with respect

to the user-specified support threshold, LCM th; items are sorted by decreasing global support

and assigned a unique progressive ID, thus defining a remapping.

The dataset is then read a second time and the frequent items of each transaction (if any)

are stored in main-memory in array form.

Finally, identical transactions are merged into a single one, whose multiplicity is set accord-

ingly. To this aim, an efficient technique is employed, linear in the size of the dataset and based

on a radix-sort strategy.
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After that, the pre-processing phase is complete and a number of auxiliary, memory-resident

data structures are allocated, including the LCM Occ structure, necessary for the occurrence

deliver routine.

6.2.2 Mining procedure

The actual mining task has its core in the LCMfreq procedure. Prior to its invocation, the

occurrence deliver routine needs to be called once, so as to populate the LCM Occ structure.

The LCMfreq procedure consists of a loop in which items are considered one by one. For

each of them, the LCMfreq iter recursive procedure is called. It operates as follows.

Given item e, the set of items co-occurring with e is computed, by scanning transactions in

T ({e}) ≡ LCM Occ[e], and stored in a queue, called the jump queue. As previously described,

only items with a higher frequency than tail(e) are considered. Due to the remapping defined

in the pre-processing step, this simply means that only items in {0, . . . , e− 1} are taken into

account in the iteration with respect to e.

The conditional database is then computed. The jump queue is pruned of all items that

co-occur with e less than LCM th times and thus cannot originate any frequent itemset together

with e. In addition, items that appear in all transactions in T ({e}) are removed from the jump

queue and inserted into a special queue, the add queue. This is to avoid useless computations,

since these items are already sure to participate in the frequent itemsets generated from item

e. They are added back at the end of the recursion (hence the name “add queue”), when

discovered frequent itemsets are output.
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If at this stage the jump queue is empty, meaning that no items other than unnecessary

ones are present in the conditional database, the iteration with respect to item e terminates

and the algorithm moves on to the next item. Otherwise, the conditional database is projected

into a temporary memory structure and LCMfreq iter is called on this database for each of

the items inside the jump queue.

When only few items are co-frequent with e, the benefit provided by this procedure can be

overshadowed by the cost of the recursion. For this reason, recursive calls are not made if the

jump queue contains less than three items; special functions are called instead to handle the

mining process in an iterative fashion. Likewise, identical transactions are not collapsed into one

upon creating the conditional database if the denotation is small. These clever optimizations

can significantly improve the performance of the extraction task when the dataset is sparse and

most of the mining steps are dealing with few items.

6.3 LCM integration

As reported by the author of the algorithm, LCM requires an amount of physical memory

which roughly corresponds to as many integers as three times the database size (given by the

sum of all transaction lenghts). Because LCM allocates all the memory it will ever need during

the initialization, it will either fail in this phase or succeed in the mining task. This stable

memory usage is an advantage compared to other algorithms, such as FP-growth, which can

fail at any time throughout the mining process because they cannot allocate any more memory,

thus wasting CPU (and user!) time.
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Nonetheless, when the input database comprises tens of millions of transactions, memory

usage becomes an issue. The LCM v.2 algorithm has been included in the framework following

a tight integration approach, in an attempt to reduce its memory requirements.

6.3.1 A memory-sparing approach

The implemented integration strategy is grounded on the observation that the LCM algo-

rithm intrinsically operates with a partitioning approach. As previously outlined, the algo-

rithm’s main loop selects one item at a time and calls the recursive mining procedure, which

performs its computations on the conditional database with respect to that item. As a con-

sequence, when iterating on item i, no other information than its denotation is required, and

the rest of the dataset needs not be in main memory. This feature of the algorithm has been

exploited to reduce its memory footprint.

Rather than the entire transactional dataset, the denotation of a single item at a time is

extracted from the Hybrid-Tree. This is possible thanks to the item-based traversal enabled

by the Item-Index. The recursive mining procedure is subsequently called on this item-based

projection. Upon returning from the recursion, the item-based projection is removed from main

memory and the next one is fetched from the disk-based tree. This approach ensures that only

the data actually required by the mining process at any time are present in main memory. Since

item-based projections are in most cases orders of magnitude smaller than the full dataset, a

significant memory saving can be achieved, thus enabling a broader-scale exploitation of the

LCM algorithm.
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6.3.2 Implementation

To the aim of integrating it into the LSD framework, the LCM source code has been de-

composed and some portions have been moved inside the framework. The LCM code thus runs

as part of the framework process, and not as a separate one. This solution has been chosen

for maximum performance, because it makes it possible to directly handle the memory-resident

structures from within the framework. The alternative to a single process would have required

some inter-process communication strategy, such as pipes or shared memory. However, these

solutions are costly: the former introduce the overhead of data copying between processes; the

latter necessitates additional synchronization primitives, such as semaphores, thus further com-

plicating the integration. With the adopted strategy, the algorithm simply runs on its usual

data structures, which are populated by the framework as appropriate.

As with the original in-memory version, two main steps can be identified: a pre-processing

phase and the actual mining phase.

Pre-processing

In the context of the Hybrid-Tree framework, the original pre-processing step performed

by LCM is to a large extent unnecessary, because the transactional data stored in the tree

is already organised following the same criteria. Hence, some of LCM’s data structures are

directly allocated and filled by the framework. These structures include:

• the item remapping table, LCM perm;

• the transaction array, LCM trsact;

• the LCM occ array structure, used for the occurrence deliver.
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Prior to all operations, the header table of the tree is pruned of infrequent items.

The item remapping table is then simply copied from the one included in the materialization

file.

The last two structures, on the other hand, require a more careful analysis in order to

allocate a sufficient amount of memory.

Because the transaction array must be able to (separately) accommodate the denotations of

all items, its size must equal that of the largest denotation; this is to avoid the costly operation

of reallocating memory throughout the mining process. This information can be obtained from

the header table of the Hybrid-Tree.

More precisely, the header table contains the entry point to and the length of the Item-Index

chains. Every node referenced by the Item-Index chains defines a distinct path in the tree, from

the root to the node itself. As a consequence, the item denotation will include at least one

transaction beginning with each of such prefix paths. If the node at stake is not a leaf, multiple

transactions will then share the same prefix path. It thus appears that the length of a given

Item-Index chain is a lower bound for the size of the corresponding denotation.

The conditional database, computed from the denotation, will include at least as many

distinct transactions. In addition, it must be recalled that, in order to obtain the conditional

database, all items with a lower global frequency than the considered one need to be removed

from the denotation. Due to the way transactions are sorted in the tree paths, this translates

to discarding all nodes located below the one referenced by Item-Index chain. Consequently, the

above mentioned prefix-paths are exactly the transactions included in the conditional database;
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the length of the chain thus represents the exact size of the conditional database for a given

item.

It is therefore sufficient to look for the maximum Item-Index chain length in the header table

and tailor the LCM trsact structure accordingly.

After that, the LCM occ structure is allocated. This structure consists of a number of

arrays, one for every possible (globally frequent) item. Each array cell is used to store the ID of

a transaction containing a given item and it is populated prior to each iteration. In principle,

it would be best to allocate for each item as many array cells as the maximum number of

transactions in which it can appear, across all denotations. However, this number is not known

in advance and it cannot be computed unless all item-based projections of the dataset are also

computed and read once, prior to the allocation. To avoid this useless computational effort, a

loose bound is exploited, corresponding to the previous “max-length” bound. By doing so, one

can be sure that all size constraints on LCM occ are satisfied in all denotations. The drawback

is that some memory is thus wasted. However, this waste is always upper-bounded by the size

of the largest item-based projection, which is a great deal smaller than the overall number of

transactions. In most practical cases, the amount of wasted space can be considered negligible.

The rest of the data structures comprises a number of auxiliary buffers. Since no particular

value or size estimate is needed to initialize them, the original LCM init routine is let take care

of their allocation.
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Mining

Once all data structures have been conveniently created, the actual mining process can

take place. To this aim, one denotation at a time is extracted from the tree resorting to the

GetDenotation primitive described in Section 5.3. As formerly explained, items smaller than the

current one (i.e., located farther from the root) are not read and hence no bottom-down traversal

is necessary. Not only does this save on I/O costs, but it eases the subsequent conditional

database reduction performed by LCM because it removes unnecessary items beforehand and

contextually collapses identical transactions into one thanks to the common prefix they share.

The LCM occ structure is then populated by filling the array of the current item, i, with

the IDs of the transactions in which it appears. Since the algorithm is dealing with item-

based projections, this boils down to writing numbers in {0, . . . , |T (i)| − 1}. The LCMfreq iter

procedure is then called with respect to item i and the mining task is performed on the current

denotation.

A sketch of the integrated mining procedure is provided by Algorithm 4.
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Algorithm 4 Outline of LCM disk-based mining

procedure LCMDiskBasedMine (σ : support ) i s
begin

Al locateDataSt ructure s ( ) ;
I := PruneItems (σ ) ;
for item i in I do

D := GetDenotation ( i ) ;
for j in 1 . . s i z e (D) do

Occurrence [ j ] := j ;
end for ;
LCMMineInMem (D, Occurrence ) ;
De lete (D) ;

end for ;
end LCMDiskBasedMine ;



CHAPTER 7

MATERIALIZATION PERFORMANCE

This chapter is meant as an evaluation of the contributions provided by the first part of this

master thesis work.

The focus in this part was on the development of a scalable sorting strategy to perform the

dataset pre-processing step and a compression technique to reduce the size of the Item-Index.

The following sections will analyze the features of the materialized structure comprising

the Hybrid-Tree and the Item-Index for a number of synthetic datasets generated with different

parameters. The leverage of the sorting operation on the overall creation time will also be

discussed.

7.1 Materialization features

In order to validate the proposed approach, the performance of the Hybrid-Tree and Item-

Index structures has been addressed by performing a large set of experiments. Different rep-

resentative synthetic datasets have been chosen to this aim, whose characteristics in terms of

transaction and item cardinality, length and correlation of frequent patterns and dataset size

are shown in Table II.

All datasets have been created by means of the IBM synthetic dataset generator, by setting

different parameters (i.e., T average transaction length, P average maximal pattern length, I

number of different items, C correlation grade between patterns, and D number of transactions).
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Experiments have been run on two different machines, depending on the size of the dataset.

In particular, experiments on datasets including less than 45M transactions have been run on

a commodity PC with the following characteristics (configuration I):

• Intel(R) Pentium(R) 4 3.20GHz processor

• 2.5 Gbyte main memory

• Linux kernel 2.6.20.

In contrast, experiments on datasets whose size exceeds 45M transactions have been per-

formed on a more powerful machine (configuration II):

• Intel(R) Core(TM) 2 Quad 2.66 GHz processor

• 8 Gbyte main memory

• Linux kernel 2.6.28

7.1.1 Data compaction

In Table III the materialization characteristics of the considered datasets are given. In order

to evaluate the degree of compaction provided by the hybrid structure, a compression factor

(CF) has been defined as follows:

CF =

(
1− size (Hybrid-Tree) + size (Item-Index)

size (Dataset)

)
%

It compares the overall size of the materialization with the size of the transactional dataset.

The compression factor increases when the fraction of upper-layer nodes is high, because upper-



75

Dataset Size (gb) # Transactions # Items

T20P20I100kC0.75D10M 1.40 10M 49,372

T22P22I50kC1D15M 2.27 15M 32,515

T22P20I300kC0.75D20M 3.32 20M 73,656

T24P24I300kC1D25M 4.74 25M 75,196

T22P22I50kC1D30M 4.54 30M 32,520

T22P20I250kC0.5D45M 7.37 45M 80,873

T20P18I150kC0.75D60M 8.47 60M 55,900

T20P18I150kC0.75D100M 14.12 100M 55,900

T20P18I150kC0.75D500M 70.60 500M 55,900

T20P18I150kC0.75D1000M 141.19 1000M 55,900

TABLE II

DATASET CHARACTERISTICS

Dataset
UL
Nodes
(%)

LL
Nodes
(%)

Tree
size
(gb)

Index
size
(gb)

Total
size
(gb)

CF
(%)

T20P20I100kC0.75D10M 12.54 87.46 0.63 0.72 1.36 3.24

T22P22I50kC1D15M 14.34 85.66 1.08 1.16 2.24 1.55

T22P20I300kC0.75D20M 17.40 82.60 1.59 1.55 3.14 5.17

T24P24I300kC1D25M 18.09 81.91 1.99 1.91 3.89 17.93

T22P22I50kC1D30M 18.64 81.36 2.23 2.11 4.34 4.38

T22P20I250kC0.5D45M 21.64 78.36 3.66 3.18 6.85 7.13

T20P18I150kC0.75D60M 24.67 75.33 4.41 3.55 7.96 6.04

T20P18I150kC0.75D100M 27.74 72.26 7.02 5.27 12.30 12.91

T20P18I150kC0.75D500M 30.70 69.30 24.49 17.23 41.72 40.90

T20P18I150kC0.75D1000M 29.92 70.08 40.13 28.72 68.85 51.23

TABLE III

MATERIALIZATION CHARACTERISTICS
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layer nodes can compactly encode a large number of transactions that share many items. The

second and third columns illustrate how data has been split up between the two Hybrid-Tree

layers, and hence provides information on the data distributions of the diverse datasets.

As it appears from the first lines of the table, small- and medium-sized datasets (10M,

15M, 20M, and 30M transactions) have only a small percentage of nodes residing in the upper

layer, the majority of the tree being composed of lower-layer nodes. As a consequence, the

compression factor is quite low for these datasets and the Hybrid-Tree and Item-Index structures

provide a limited degree of compaction.

One noteworthy exception is represented by the T24P24I300kC1D25M dataset, whose com-

pression factor (nearly 18%) is significantly better in comparison to the other datasets. The

reason is that frequent patterns in this dataset are very long, which translates to a higher frac-

tion of each transaction containing frequent items and, hence, to a larger part of the dataset

being represented by means of upper-layer nodes.

It can thus be inferred that the Hybrid-Tree structure is most suitable for dense datasets,

although it can still provide some degree of compression with sparser datasets thanks to the

smaller-sized lower-layer node structures.

The percentage of upper-layer nodes tends to increase as the size of the dataset grows

larger, as it is the case with the last datasets included in Table Table III. For such datasets, the

compression factor reaches very high values, thus suggesting that the Hybrid-Tree representation

is optimal for very large datasets.
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The Item-Index size is reported in the fifth column of the table. In spite of the adopted

compression technique, the final size of the Item-Index exceeds that of the tree for the first

two datasets. However, as the cardinality of datasets increases, the Item-Index becomes smaller

in size than the Hybrid-Tree. To evaluate the relative incidence of the Item-Index on the final

materialization size and compare its size to that of the Hybrid-Tree, the following quantities

have been considered:

ITR =
size (Item-Index)

size (Hybrid-Tree)
% (Item to Tree Ratio)

IMR =
size (Item-Index)

size (Hybrid-Tree) + size (Item-Index)
% (Item to Materialization Ratio)

The corresponding values for the considered datasets are provided in Table IV.

Starting from the 20M transaction dataset, the incidence of the Item-Index is subjected to

a steady decrease. This phenomenon can be explained as follows. Both the Item-Index and

the Hybrid-Tree sizes are proportional to the number of nodes in the tree. The Hybrid-Tree

comprises two types of nodes – upper-layer nodes and lower-layer nodes –, which take up

28 bytes and 4 bytes respectively. For this reason, the Hybrid-Tree size is kept down to a limit

even when the number of created nodes is very high. The Item-Index, in contrast, cannot provide

such distribution-adaptive layering and all of its nodes have a constant size of 8 bytes. As a

consequence, for sparser datasets, where lower-layer nodes predominate, the double-layering of

the tree achieves better compaction than the Item-Index.
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Dataset ITR (%) IMR (%)

T20P20I100kC0.75D10M 114.14 53.26

T22P22I50kC1D15M 107.51 51.78

T22P20I300kC0.75D20M 97.86 49.43

T24P24I300kC1D25M 95.91 48.94

T22P22I50kC1D30M 94.40 48.55

T22P20I250kC0.5D45M 87.02 46.51

T20P18I150kC0.75D60M 80.63 44.63

T20P18I150kC0.75D100M 75.06 42.87

T20P18I150kC0.75D500M 70.37 41.30

T20P18I150kC0.75D1000M 71.55 41.71

TABLE IV

INCIDENCE OF THE ITEM-INDEX

On the other hand, the Item-Index becomes significantly smaller than the Hybrid-Tree when

larger datasets are concerned.

On the whole, the proposed materialized structure performs best with large datasets and,

for a given dataset size, maximum compaction is achieved with the denser datasets.

7.2 Materialization time

The overall time needed to create a complete materialization starting from a raw dataset is

the sum of five distinct contributions:

1. pre-processing step, which includes item support count and dataset remapping;

2. dataset sorting

3. construction of the G-tree;
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4. optimization of data contiguity, creation of the Item-Index and lower layer;

5. serialization of the upper layer.

To the aim of evaluating the leverage of the sorting operation on the entire creation task,

steps 4 and 5 will be considered as a whole and simply referred to as “materialization”.

7.2.1 Sorting operation impact

The sorting algorithm of choice was initially the Linux sort utility, as discussed in Section

4.3.1. Its performance massively decreases as the dataset size grows. As shown by experiments,

the time required to carry out the first two of the previously outlined steps (i.e., pre-processing

and sorting) resorting to this algorithm accounts for about 55%-60% of the overall creation

time.

The designed sorting algorithm has been integrated in the framework and tests have been

run on different datasets. Figure 6, Figure 7 and Figure 8 highlight the time contribution

of each step to the creation phase. Contributions relative to the last two datasets (500M and

1000M transaction) have been depicted separately being out of scale with respect to the smaller

ones.

As it can be noticed, the developed algorithm much alleviates the sorting task. The impact

of the the first two steps amounts to about 14%-18% on the smaller datasets and 25%-30% on

the larger ones – the actual sorting step always being the least time-consuming one.

It is worth mentioning that the relative contribution of the sorting step gradually increases

with the size of the dataset, ranging from 4% on the smallest dataset to nearly 10% on the

largest one. This is actually due to the data distribution, rather than to some inefficiency
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of the mining algorithm. As a matter of fact, the durations of the various creation steps are

proportional to different quantities. In particular, the durations of pre-processing and sorting

steps are directly proportional to the cardinality of the input dataset. The time needed for

constructing the G-tree depends on both the input dataset and its data distribution: for denser

datasets, less nodes are crated and hence less time is spent with disk write operations, thus

speeding up the tree construction. Finally, all subsequent phases (tree serialization, Item-Index

creation) depend solely on the number of nodes included in the G-tree.

As previously discussed, the Hybrid-Tree representation provides better compaction with

larger datasets, meaning that less nodes are created for such datasets in comparison to the

smaller ones. As a consequence, the impact of such phases tends to decrease on the larger

datasets, while that of the pre-processing and sorting steps does not.

7.2.2 Algorithm comparative test

In order to further investigate the highlights of the developed sorting algorithm, some experi-

ments have been performed by running the two algorithms on different datasets. The considered

datasets differ from the ones that have been analysed up to now; in particular, because the sort-

ing operation with the Linux sort utility requires much time, only smaller datasets have been

employed for this experiment.

As reported in Table V, results show that the speed-up achieved by the developed sorting

algorithm is always more than ten-fold. Although comparison has not been established on larger

datasets, this speed-up factor is expected to increase significantly as datasets grow. The reason

is that the Linux sort performance dramatically suffers from memory shortage and becomes
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Figure 6. Materialization time for 10M, 15M, 20M, 25M and 300M transaction datasets

Dataset Unix sort (s) New algorithm (s) Speed-up (x)

T20P20I100kC0.75D5M 923 39 23.67

T20P20I100kC0.75D10M 2134 140 15.24

T22P20I300kC0.75D20M 4116 356 11.56

T24P24I300kC1D25M 7066 511 13.83

TABLE V

SORTING TIME WITH DIFFERENT ALGORITHMS
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Figure 7. Materialization time for 45M, 60M and 100M transaction datasets
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Figure 8. Materialization time for 500M and 1000M transaction datasets



84

extremely poor when much swapping occurs. This issue does not affect the developed sorting

algorithm, which therefore exhibits much better performance.

7.2.3 Sorting algorithm scalability

As discussed in Section 4.3.2, the proposed sorting algorithm has a theoretical time complex-

ity which is linear in the size of the dataset. In order to assess this property, a scalability test has

been performed by comparing the sorting algorithm performance on a number of different-sized

datasets.

Figure 9 and Figure 10 depict the results obtained with these experiments. As expected,

the elapsed time grows linearly with the size of the considered dataset.
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Figure 9. Sorting algorithm scalability on smaller datasets
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Figure 10. Sorting algorithm scalability on larger datasets



CHAPTER 8

MINING PERFORMANCE

This chapter aims at providing a detailed view on the performance of the mining task

performed by means of the LCM v.2 algorithm integrated in our framework.

The first set of experiments is focused on the behavior of the disk-based integration of LCM

v.2 when compared to the original memory-based counterpart. Such an approach is possible as

long as the considered dataset can be accommodated in main memory for the mining process.

For larger datasets this approach is no longer feasible: the in-memory algorithm starts

swapping to disk and, depending on the amount of available swap disk space, eventually fails

in allocating the memory it needs. As a consequence, only the performance and scalability of

the integrated version have been evaluated for these datasets.

Hereinafter, “LCM disk-based” will be used to designate the integrated version of LCM.

8.1 Small datasets

Three small datasets have been considered for this test case:

• T20P20I100kC0.75D10M

• T22P20I300kC0.75D20M

• T24P24I300kC1D25M
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These datasets have in common the fact that they fit in main memory. Hence, this test

case will illustrate the behavior of the two LCM versions when the in-memory version needs

not swap to disk.

8.1.1 Results

T20P20I100kC0.75D10M

Results are depicted in Figure 11. For the considered support thresholds, the best perfor-

mance is achieved by LCM disk-based. In particular, with with the higher support thresholds

(0.3%-0.5%), the LCM disk-based significantly outperforms LCM in-memory. This is because

the in-memory version has to read the entire dataset at least once and accomplish preliminary

operations (item support counting, infrequent item pruning, transaction sorting). In contrast,

the disk-based version needs no pre-processing and can thus directly start mining.

This gap between the memory-based and the disk based version mining times tends to

decrease as the support threshold is lowered. For one intermediate threshold (0.25%), LCM

in-memory performs slightly better than LCM disk-based.

Some jittering may be noticed in the LCM disk-based mining times. In particular, for

two support threshold pairs (0.25%-0.20% and 0.15%-0.125%) mining time decreases as the

threshold is lowered. This phenomenon can be explained by recalling that most operating

systems provide a file cache mechanism. To reduce the costly operation of reading from disk,

portions of frequently accessed files are cached in main memory, so as to speed-up future accesses

to such files. It is reasonable to assume that the reduced mining time in the two aforementioned
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Figure 11. T20P20I100kC0.75D10M: LCM in-memory vs. disk-based

cases be due to tree pages (or parts of them) still being present in the operating system file

cache, thus saving on I/O costs.

T22P20I300kC0.75D20M

Mining times for this dataset are plotted in Figure 12. Noticeably, LCM disk-based outper-

forms its in-memory counterpart by two orders of magnitude for the higher support thresholds.

This advantage, which is quite constant until the 0.2% threshold, subsequently starts decreas-
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ing as the support threshold is lowered. At a support threshold of 0.125% LCM disk-based

eventually exhibits worse performance than the in-memory version.

This is due to the larger amount of data involved in the mining process and, hence, of disk

reads that are needed by the former version. On the other hand, this phenomenon does not

affect the latter version, because once the pre-processing step is complete, the full (pruned)

dataset is in main memory and hence data accesses are much faster.

At the lowest support threshold the two versions are comparable again, probably because

of both the operating system file cache and the smaller amount of processing required by the

disk-based version.

T24P24I300kC1D25M

Results of this test are provided in Figure 13. This dataset has already been considered in

Section 7.1.1, when discussing the performance of the materialized structure in terms of data

compaction. As previously pointed out, the corresponding materialization presented a very

good degree of compaction. This characteristic can be identified as the main reason for the

good performance it also exhibits in the mining phase.

LCM disk-based outperforms LCM in-memory for all of the considered support thresholds.

Thanks to the high compaction degree, only smaller amounts of data (in comparison with the

plain-text dataset) need to be fetched from disk for the mining process. As a consequence,

LCM disk-based still performs better than the in-memory version for extremely low support

thresholds, such as 0.08%. Even though the number of frequent itemsets (greater than 109)
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Figure 12. T22P20I300kC0.75D20M: LCM in-memory vs. disk-based
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Figure 13. T24P24I300kC1D25M: LCM in-memory vs. disk-based

found for such support thresholds is too large to extract useful information, it is still interesting

to notice the good results achieved by LCM disk-based on a dense dataset.

8.2 Page pre-faulting

As outlined in Chapter 5, the Hybrid-Tree environment exploits memory mapping to selec-

tively load in main memory pages of the materialized tree. One of the benefits provided by the

memory mapping mechanism is the so-called “lazy-loading”.
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This refers to the fact that, whenever a tree node is accessed during the mining process,

only a small portion of the tree page where it resides – and not the entire page – is fetched

from disk and loaded into main memory. The OS paging system is exploited to this aim, which

makes use of small 4KByte pages. This feature results in a strictly on-demand data access

scheme and saves considerable amounts of main memory.

For the purposes of the mining task, the real benefits of such a feature have been analysed.

In particular, another data access scheme has been enforced during the mining process and

performances of the two approaches have been compared.

The alternative data access scheme is based on a pre-faulting mechanism: whenever a node

that is currently swapped out on disk needs to be accessed, the corresponding page is entirely

loaded into main memory. The purpose is to minimize the number of distinct disk accesses

and, for such events, maximize the sequentiality of the read data. The underlying assumption

is that, if a page is accessed and one of its nodes is loaded in memory, other nodes included in

the same page are also likely to be accessed in the future. This way, a large number of disk

reads is avoided and the time spent with disk seeking operations is reduced.

8.2.1 Results

The page pre-faulting mechanism has been experimented on two datasets:

• T22P20I300kC0.75D20M

• T24P24I300kC1D25M

These datasets have been chosen as representatives because they illustrate the opposite effects

pre-faulting can produce. Results are illustrated in Figure 14 and Figure 15.
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For the first considered dataset, pre-faulting turns out beneficial in most cases. For the

higher support thresholds much time is spent by the pre-faulted version with retrieving useless

data, while the non-pre-faulted one only reads the small bits of data it actually needs. As

a consequence, the pre-faulting mechanism does not produce an advantage. However, as the

support threshold is decreased, the pre-faulted version gains a significant advantage. The

assumption previously stated holds with this dataset.

In contrast, the pre-faulting mechanism has disastrous outcomes on the second considered

dataset. Mining times are – sometimes significantly – higher than those obtained with no pre-

faulting, for all support thresholds but one. This effect may be due to the data distribution:

T24P24I300kC1D25M being a very dense dataset, few nodes are shared by a large number of

transactions. In this case, loading all the surrounding nodes in main memory may be of no use

and the mining process is forced to incur additional I/O costs with no actual benefit.

8.3 A medium-sized dataset

In this test case a medium-sized dataset, T22P20I250kC0.5D45M, has been considered. The

purpose was to analyse the performance of LCM disk-based on a dataset whose size exceeds

the available physical memory. Configuration I (see Section 7.1), which is only equipped with

2.5 Gbytes RAM, has been chosen to run this test, in order to “create” a memory bottleneck.

8.3.1 Results

Experimental results for this dataset are plotted in Figure 16 and Figure 17. In particular,

Figure Figure 16 depicts mining times for the higher support thresholds. The same observations
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Figure 14. T22P20I300kC0.75D20M: LCM disk-based mining, impact of pre-faulting



96

Figure 15. T24P24I300kC1D25M: LCM disk-based mining, impact of pre-faulting
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stated for the T22P20I300kC0.75D20M dataset also hold for this dataset. From a certain

threshold on, LCM in-memory starts outperforming the disk-based version.

However, because of the size of this dataset, lowering the support threshold gradually makes

the mining process unmanageable by the memory-based algorithm. This situation is illustrated

in Figure 17, where the memory-based version fails to mine at a support threshold of 0.1%. It

has been interrupted after 15 hours because much swapping was occurring, while the actual

CPU time only amounted to a few minutes. LCM disk-based, in contrast, still succeeds in the

mining task, completing it after 5 hours. Such a result is far from being considered a timely

one, but it still shows the better scalability of the disk-based approach.

8.4 Large datasets

In order to validate the proposed approach, experiments have been run on the following

very large datasets:

• T20P18I150kC0.75D60M

• T20P18I150kC0.75D100M

• T20P18I150kC0.75D500M

• T20P18I150kC0.75D1000M

In an attempt to evaluate the scalability of the approach regardless of the considered data

distribution, datasets have been generated with the same parameters but the number of trans-

actions.
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Figure 16. T22P20I250kC0.5D45M: LCM in-memory vs. disk-based, higher thresholds
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Figure 17. T22P20I250kC0.5D45M: LCM in-memory vs. disk-based, all thresholds
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Comparison between the disk-based and the memory-based versions is no longer possible at

this stage, because the memory-based version can only perform itemset extraction from these

datasets at very high support thresholds in the best case and fails to allocate its memory-resident

structures in the majority of cases.

8.4.1 Scalability

Results of the scalability test are plotted in Figure 18. Itemset extraction has been performed

on the four aforementioned datasets at different support thresholds and performances have been

compared.

As it appears from the plot, mining times for the first three datasets increase linearly with

their sizes. This also true for the largest one billion transaction dataset when the higher support

threshold are considered. However, as the support threshold decreases, mining times for this

dataset still grow linearly, but following a different, less steep slope.

Once again, this may be due to the higher degree of compaction achieved on this dataset,

which favors the mining process. Another reason may be identified with the smaller impact of

I/O operations with respect to the extraction process itself, whose computational cost becomes

predominant on such large datasets.
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Figure 18. Scalability on large datasets



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

The solutions proposed in this master thesis work have proved able to successfully tackle fre-

quent itemset extraction from much larger datasets than most other state-of-the-art approaches

can handle. In addition, some improvements have been suggested and implemented to speed

up the creation of the persistent tree structure.

Creating the persistent representation.

The main contribution to the materialization of the disk-based Hybrid-Tree is represented

by development of a novel dataset sorting algorithm. Sorting transactions beforehand yields

notable benefits in the creation phase, because it avoids multiple, temporally non-local visits of

the same portion of the tree, thus positively impacting I/O times. However, this step was the

most resource-demanding one and accounted for about 55%-60% of the overall creation time.

The proposed technique splits the input dataset into a number of non-overlapping partitions,

defining a partial order on the set of transactions. Each partition can then be sorted indepen-

dently. This approach avoids several, costly passes over the dataset, thus saving on I/O costs;

in addition, it scales linearly with the dataset size.

102
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Index support.

To enhance mining activity, an indexing structure, called Item-Index, has been designed and

developed for the Hybrid-Tree.

This compact index enables an item-based traversal of the Hybrid-Tree, required by several

frequent itemset mining algorithms. The index consists of a per-item array-based structure,

allowing fast loading and scanning. Although this index is not covering with respect to the

mining task, the amount of replicated information (which includes composite pointers to nodes

of the tree and their local support) is such that its final size can often exceed that of the Hybrid-

Tree itself. Consequently, an ad-hoc compression technique has been developed which exploits

a differential coding scheme and special structures maximizing the packing of data.

Further, some primitives have been developed to support the selective retrieval from the

Hybrid-Tree of the transactional data explored during the mining process. These primitives

heavily rely on the Item-Index to carry out the extraction of item-based projections of the

dataset by efficiently navigating the tree in both top-down and bottom-up fashion. Their main

advantage is that of enabling a tighter integration with mining algorithms.

Disk-based data mining.

Frequent itemset mining is carried out by integrating existing mining algorithms into our

framework. Two main approaches are possible, involving different levels of complexity and

providing different levels of scalability accordingly.

The first approach is the least invasive one; it consists in exploiting the Hybrid-Tree frame-

work to extract a support-based projection from the dataset and subsequently mine it with the
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algorithm of choice. The original algorithm can be directly chained to the extraction module

and needs no adaptation or change of any kind. The scalability limit is thus represented by

the size of the support-based projection, which needs to be memory-resident throughout the

mining phase; when the dataset is huge, this solution may not suffice.

The second approach is likely to push this limit much farther. The underlying idea is to

partition data loading and exploit the temporal locality of accesses of the algorithm. The

target is to keep in memory, at any given time, only those portions of the dataset that are

actually involved in the current mining activity. This approach requires a better understanding

of the algorithm internals and, possibly, some modification of its routines. At the cost of an

increased integration complexity, this solution can provide valuable benefits in terms of memory

consumption. It has been applied to an efficient state-of-the-art mining algorithm, LCM v.2.

LCM v.2 is a mining algorithm which proved to outperform all other state-of-the-art mining

algorithms in most cases; in addition, it has a linear complexity and is thus very suitable for large

datasets. Yet, as a main drawback, its original implementation requires that the entire dataset

be loaded in main memory, thus majorly limiting its scalability. Following the aforementioned

partitioning approach, specific data access behaviors of this algorithm have been identified. Its

main routine has been decomposed and interleaved with the selective retrieval of item-based

projections from the Hybrid-Tree. The developed access primitives have been exploited to this

aim. As a result, LCM has been enabled to perform itemset extraction by processing in main

memory only a single item-based projection at a time. Its memory requirements have thus been

greatly reduced, ultimately making it far more scalable.
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Experimental results.

The experimental section of this master thesis work has been divided into two parts.

In the first set of experiments (i) the contribution proposed to improve the creation phase,

namely the sorting algorithm, and (ii) the compression technique designed to reduce the final

size of the Item-Index were validated upon five small-/medium-sized datasets (5M, 10M, 15M,

20M and 25M transactions) using a commodity PC and upon four large-sized datasets (45M,

60M, 100M and 500M transactions) using a mini-server machine; all datasets were synthesized

with the IBM generator. The time complexity of the sorting algorithm showed linear when the

different-sized datasets followed the same data distribution, and roughly linear otherwise. The

devised compression technique achieved a size reduction of about 33% on the Item-Index of all

the considered datasets; its time complexity is roughly linear in the number of nodes of the

Hybrid-Tree.

The second series of experiments was aimed at assessing the mining performance of the

integration proposed for the LCM v.2 algorithm. With small- and medium-sized datasets, the

disk-based LCM outperforms the in-memory version for high support thresholds and is compa-

rable to it for low support thresholds. This still holds as the dataset grows bigger and ultimately

exceeds the size of the largest dataset manageable by the original memory-based approach on

a fairly well-equipped machine. The mining process completes in a timely fashion (less than 45

minutes) on datasets larger than the physical memory by over one order of magnitude, while

memory requirements are still very low (about 17% of the available memory).
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A larger impact of I/O on mining times is to be expected as the available physical memory

limit is approached. Although such an event has not occurred in our tests, this should not lead

to a dramatical slow-down, thanks to the structured I/O framework which directly manages

swapping.

9.2 Future work

This work proposed some techniques that proved able to enhance the performance and

scalability of this disk-based data mining framework. Nonetheless, a number of issues could

still be addressed, affecting both the materialization and the mining phase.

The disk-based tree is built through a gradual process which exploits several temporary

structures stored on disk. Some of these structures are needed until the materialization has

been fully created and therefore cannot be deleted prior to completion to save disk space.

Among them is a temporary, uncompressed Item-Index. Because of the way it is obtained from

the tree, it is currently unfeasible to compress it on-the-fly. It may be interesting, as a possible

future development, to investigate alternative tree traversal strategies that enable to create full

and disjoint Item-Index portions, which could then be directly compressed.

A further improvement may result from the study and development of new data structures

to store the original dataset. The Hybrid-Tree currently exploits prefix-tree and array structures

to provide a distribution-adaptive representation. As suggested in (16), bitmap structures are

another effective and compact way to represent very dense portions of datasets; their integration

in the Hybrid-Tree environment may lead to a higher compaction of the materialized tree and

indirectly enhance the mining process by reducing memory consumption and I/O times.
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Different interestingness constraints may also be integrated in the data mining framework.

Constraint specification allows the analyst to better focus on interesting itemsets for the con-

sidered analysis task. Since the Hybrid-Tree provides a complete and compact representation

of the transactional dataset, the item constraints proposed in (17) can be easily supported by

the Hybrid-Tree. In addition, the proposed representation can be easily exploited by different

algorithms that extract different and more compact itemsets (e.g., closed itemsets (18; 19) and

maximal itemsets (20; 21)).

Finally, in furtherance of a more efficient LCM v.2 integration, two other improvements

may be envisioned.

The first one concerns the amount of used memory. Because item-based projections are

processed by LCM in main memory, the necessary memory-based structures must be afforded.

In order to avoid reallocating memory for each projection, an estimate of the maximum amount

of required memory is used to allocate them at the beginning of the mining session. However,

this estimate is loose, which results in some waste. A tighter estimate could be suggested to

reduce this waste.

As a second possible improvement, data retrieval and data mining routines may be paral-

lelized, so that new item-based projections can be asynchronously fetched from disk while the

CPU is busy with the current mining process. The benefit may be especially noticeable when

mining is performed at low support thresholds, because a lot of CPU time is then required to

process each item-based projection: this time could be profitably spent on filling a buffer, so as

to reduce the chances of blocking I/O.
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