Databases

Management of views

Management of views

> Introduction

2 Creation and management of views in SQL
+> Updating views

7 Check option

>> Privacy Management

i

> Management of views
> Transactions

applications
> Access control
> Index management

SQL language: other definitions

2> Use of SQL in programming languages, SQL for

Management of views

Introduction

S

SQL language: other definitions

Management of views

> > A view is a "virtual" table

® the content (tuples) is defined by means of an SQL
query on the database

® the content of the view depends on the content of
the other tables present in the database

@ the content is not memorized physically in the
database

& it is recalculated every time the view is used by
executing the query that defines it

> A view is an object of the database
® it can be used in queries as if it were a table

Dl 6

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases Management of views

P SP = ; ;
ST e o e e sid [P Ty Z Definition of the view “small suppliers”
P1_| Jumper | Red 40 | London S1 | PL |300 @ it contains the code, name, number of employees
P2 | Jeans |Green| 48 [Paris ST 120 and city of suppliers with fewer than 3 employees
P3 Blouse Blue 48 Rome St P3 |400
P4 | Blouse | Red | 44 | London gi E‘S‘ igg —Name of the views
P5 Skirt Blue 40 Paris
T e WY STRREERIED CREATE VIEW SMALL_SUPPLIERS AS
2 | P1 | 300 SELECT SId, SName, #Employees, City
S s2 | P2 [400 FROM S
<3
S0 | SName | #Employess | Gty s3 [p2 [200 WHERE #Employees<3;
S1 Smith 20 London S HIM 1200
! s4 | P4 |300
S2 Jones 10 Par!s 4 5 | 200
S3 Blake 30 Paris
S4 Clark 20 London
S5 | Adams 30 Athens

> Definition of the view small suppliers 2> View the code, name, employee number and city
@ the suppliers that have fewer than 3 employees of “small suppliers” in London
are considered “small suppliers” 2> The query can be answered without using views

2> The view “small suppliers”
® contains the code, name, number of employees

*

and city of the suppliers that have fewer than 3 iggfv,ds

employees. WHERE #Employees<3 AND
City="London’;

>> Definition of the view “small suppliers” > View the code, name, employee number and city
® contains the code, name, number of employees city of “small suppliers” in London
and city of suppliers with fewer than 3 employees 5> The query can be answered using the view
defined previously
- SELECT *

SELECT SId, SName, #Employees, City FROM SMALL SUPPLIERS

FROM S WHERE City="London’;

WHERE #Employees <3

2> The view SMALL_SUPPLIERS is used like a table

Query associated with the view

D[]\')’AG & D[]_)’AG 12

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino 2

Databases Management of views

Rewriting the queries

> If the query refers to a view, it has to be

> View the code, name, employee number and city
reformulated by the DBMS before execution city of “small suppliers” in London
> The reformulation is carried out automatically SELECT SId, SName, City, #Employees
® ; : ; FROM S
the_ r(_ef_erences to the view are substituted by its WHERE #Employees<3 AND
definition e e e
City="Torino’;

2> Introduction of the definition of the view
® In the clause FROM
® In the clause WHERE

p 7/"‘ =
Example n.2

> View the code, name, employee number and city 2> Definition of the view number of suppliers per
city of “small suppliers” in London product
SELECT *

FROM SMALL_SUPPLIERS

® The view contains the product code and the
WHERE City="London’;

number of different suppliers providing it

ulating the query

> View the code, name, employee number and city > Definition of the view “number of suppliers per
city of “small suppliers” in London product”
SELECT SId, SName, City, #Employees ® The view contains the product code and the
FROM SMALL_SUPPLIERS number of different suppliers providing it
WHERE City="London’;

1> Reformulate the SELECT clause

@ the attributes present in the definition of the view SELECT PId, COUNT(*)
are made explicit FROM SP
GROUP BY PId

|

uery associated with the view

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases

CREATE VIEW NUMSUPPLIERS_PER_PRODUCT
(PId, #Suppliers) AS

SELECT PId, COUNT(*)

FROM SP

GROUP BY PId;

— Name of the views

> Definition of the view “number of suppliers per
product”
@ the view contains the product code and the
number of different suppliers providing it

Management of views

> View the code of products supplied by the
greatest number of suppliers

7> Using the view NUMSUPPLIERS_PER_PRODUCT

SELECT PId
FROM NUMSUPPLIERS_PER_PRODUCT
WHERE #Suppliers=(SELECT MAX(#Suppliers)
FROM
NUMSUPPLIERS_PER_PRODUCT);

piG =

CREATE VIEW NUMSUPPLIERS_PER_PRODUCT
(PId, #Suppliers) AS
SELECT PId, o
FROM SP

GROUP BY PId;

Attributes of the view

> Definition of the view “number of suppliers per
product”

@ the view contains the product code and the
number of different suppliers providing it

20

2> The use of views simplifies the formulation of the
queries
> The view SMALL_SUPPLIERS conceals the
definition of the concept of “small suppliers”
® it is possible to redefine the concept of “small
suppliers” just by changing the definition of the
view
@ it is not necessary to modify the queries that use it
2 The view NUMSUPPLIERS_PER_PRODUCT
enables us to avoid using the table function

> View the code of products supplied by the
greatest number of suppliers

> Without using views

SELECT PId

FROM SP

GROUP BY PId

HAVING COUNT(*)=(SELECT MAX(#Suppliers)

FROM SP
GROUP BY PId));

It

FROM (SELECT COUNT(¥) AS #Suppliers

21

>> Simplification of the queries
® very complex expressions can be defined in a
simpler way by using views
® by breaking down a complex query into subqueries
associated with the views

® useful in the presence of repeated (complex)
subqueries

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases

> Extension of the SQL language’s power of
expression
® in the absence of a table function, some typologies
of queries can only be defined by using views
4 as an alternative to using the procedural code

Management of views

Management of views

g S >

Advantages of views

> Security management
@ it is possible to introduce different privacy
protection mechanisms for each user or group
@ access authorization is associated with the view

® each user, or group, accesses the database only via
views that are appropriate for the operation they are
authorized to carry out

Creating a view

CREATE VIEW ViewName [(AttributieList)]
AS SQLquery;

~ MW ~ —

&

Advantages of views

> > Evolution of databases

@ If a database is restored, it is possible to define
views that correspond to the eliminated tables
the view substitutes the eliminated table which was
present in the database prior to restoration

® it is not necessary to re-formulate the queries written
before the restoration and present in the applications
that have already been developed

»» If the names of the attributes of a view are not
specified
® use those present in the SQL query selection
> The names of the attributes have to be specified
if
® they represent the result of an internal function
® they represent the result of an expression
® they are constant

@ two columns (from different tables) have the same
name

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases

DROP VIEW ViewName;

Management of views

Management of views

Updating views

> Cancelling a table that a view refers to can have
various effects

® automatic elimination of the associated views
® automatic invalidation of the associated views

@ prohibition to execute the operation of cancelling
the table

D the effect depends on the DBMS utilized

2> It is possible to update the data in a view only for
some typologies of views
&> Standard SQL-92
® views in which a single row of each table
corresponds to a single row of the view can be
updated

@ univocal correspondence between the tuple of the
view and the tuple of the table on which it is defined

® it is possibile to propagate without ambiguity the
changes made to the view to each table on which it
is defined

- - _—

Modifying the definition of a view

ALTER VIEW ViewName [(AttributieList)]
AS SQLquery;

Updating views

»> It Is not possible to update a view which in the
farthest block of its defining query

® |acks the primary key of the table on which it is
defined

@ contains joins that represent correspondences to
one-to-many or many-to-many

® contains aggregate functions

@ contains DISTINCT

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases Management of views

Example n.1

> View SUPPLIER_CITY > change to SUPPLIER_CITY of
CREATE VIEW SUPPLIER_CITY AS (*S1’, "London’) in ('S1’, *Milan”)
SELECT SId, City
FROM S;

®» changein S of
(*S1’,'Smith’,20,'London’) in (*S1’, ‘Smith’,20,'Milan”)
® dentification of the tuple to change is permitted
by the primary key

DY . pBa 5

- Example
> Insertion in SUPPLIER_CITY of 2> The view SUPPLIER_CITY can be updated
('S10’, ‘Rome’) ® each tuple of the view corresponds to a single
tuple of table S

® the changes carried out on the view can be

- . o
G0 R BT D i (Ao 17 £ 6 propagated to the table on which it is defined

('S10’,NULL,NULL,'Rome’)

@ the attributes SName, #Employees have to admit
the value NULL

Example n.2

> > Cancellation of SUPPLIER_CITY of > View NUMEMPLOYEE_CITY
(St} ‘London’) CREATE VIEW NUMEMPLOYEE_CITY AS
SELECT DISTINCT #Employees, City
® cancellation from S of FROM S;
(*S1’, *Smith’,20,'London”)
® dentification of the tuple to cancel is permitted by
the primary key

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino 7

Databases

> Insertion in NUMEMPLOYEE_CITY of
(40, ‘Rome’)

® it is impossible to insertin S
(NULL,NULL,40,'Rome’)
® the value of the primary key is missing

Management of views

-— . =

&

Example n.2: updating

> The view NUMEMPLOYEE_CITY cannot be
updated
® the primary key of table S is not present in the
view
® the insertion of new tuples in the view cannot be
propagated to S
® some tuples of the view correspond to several
tuples in the table S
® the association between the tuples in the view and
the tuples in the table is ambiguous
® it is not possible to propagate the changes carried

out on the tuples of the view to the tuples of the
table on which it is defined

> Cancellation from NUMEMPLOYEE_CITY of
(20, ‘London’)

® several tuples are associated with the pair (20,
‘London’)

@ Which tuple has to be cancelled from S?

D[]\')’AG 44

2> Some non-updatable views become updatable by
changing the SQL expression associated with the
view
® it may be necessary to reduce the information
content of the view

e n.2: change

> > Change in NUMEMPLOYEE_CITY of
(20, ‘London’) in (30, ‘Rome’)

® Several tuples are associated with the pair (20,
‘London’)

@ Which tuple has to be changed in S?

.

Example n.3: non-updatable view

CREATE VIEW SUPPLIER_LONDON AS
SELECT *

FROM S

WHERE City="London’;

22 The view is non-updatable

® it does not explicitly select the primary key of table
S

> It is sufficient to replace the symbol “*” with the
name of the attributes

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases

CREATE VIEW SUPPLIER_LONDON AS
SELECT SIa, SName, #Employees, City
FROM S

WHERE City="London’;

> The view is updatable

Management of views

/.

pdatable view

CREATE VIEW TOP_SUPPLIER (SId, SName, TotQty) AS
SELECT SId, SName, SUM(Qty)

FROM S, SP

WHERE S.SId=SP.SId

GROUP BY SId, SName

HAVING SUM(Qty)>500;

> The view is non-updatable
® an aggregate function is present
® 3 join is present

Example n.4: non-updatable view

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT DISTINCT SId, SName
FROM S, SP
WHERE S.SId=SP.SId AND
Qty>100;

> The view is non-updatable
® 3 join is present
® the keyword DISTINCT is present

query
2> The information content has changed
D[]\')’AG 0 D[]_)’AG 53

Example n.5: changed view

CREATE VIEW TOP_SUPPLIER (SId, SName) AS
SELECT SId, SName
FROM S
WHERE SId IN (SELECT SId FROM FP
GROUP BY SId
HAVING SUM(Qty)>500);

2> The view is updatable
® The “group by” has been moved into the nested

-

.

&

Example n.4:

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT SId, SName

FROM S

WHERE SId IN (SELECT SId
FROM SP
WHERE Qty>100);

> The view is updatable
@ the join was realised using IN
® the keyword DISTINCT is no longer necessary

D[]\')’AG 51

Management of views

Check option

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases Management of views

> For the updatable views use the clause WITH > Content of the view
CHECK OPTION PRODUCT_SIZE_SMALL_OR_LARGE
@ this limits the possible updates i PName Size
P2 Jeans 48 I 46
CREATE VIEW ViewName [(Attributelist)] P3 Blouse 48 — 46
AS SQLQuery . e W Y

[WITH [LOCAL|CASCADED] CHECK OPTION];

> Updating operation
UPDATE PRODUCT_SIZE_SMALL_OR_LARGE
SET Size=Size-2;

D[]\')’AG & D[]_)’AG 58

> After an update the tuples have to still belong to 2> Content of the view
the view PRODUCT_SIZE_SMALL_OR_LARGE
® otherwise the operation is prohibited Pid PName Size
> A new tuple can be inserted in the view if and P2 Jeans 48 - 46
only if the tuple satisfies the constraints present — — — =
in the definition of the view (s Shorts 42 J— 40

@ otherwise the operation is prohibited S~ 0Outside the definition of the view

>> Updating operation
UPDATE PRODUCT_SIZE_SMALL_OR_LARGE
SET Size=Size-2;

Update prohibited 59

D{?AG s D{?AG

CREATE VIEW PRODUCT_SIZE_SMALL_OR_LARGE (PId, CREATE VIEW ViewName [(Attributelist)]
PName, Size) AS AS SQLQuery
|S=E(-)IIEVICL PId, PName, Size [WITH [LOCAL|CASCADED] CHECK OPTION];
WHERE Size>=42
WITH CHECK OPTION; 2> When a view is defined in terms of other views
® if LOCAL is specified
1> The view is updatable @ the update is correct only on the most external view
@ it is not possible to update the tuples present in ® f CASCADED is specified
the view if their size is less than 42 ® the update is correct on all the views involved
® default options
D[]\')’AG & D[]_)’AG 60

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino 10

Databases

Example n.2

Management of views

Example n.2

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, PName, Size) AS
SELECT PId, PName, Size

FROM PRODUCT_SIZE_SMALL_OR_LARGE

WHERE Size<=46

WITH CASCADED CHECK OPTION;

> 1 can update the content of the view
PRODUCT_SIZE_MEDIUM using only sizes
between 42 and 46

> Default behaviour

61

> Content of the view PRODUCT_SIZE_MEDIUM

Pld PName Size
P4 Blouse 44 — | 42 |
[_Ps Shorts 42 — w0 ||

QOutside definition of the view PRODUCT_SIZE_SMALL_OR_LARGE
7~ Updating operation
UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

> > With CASCADED CHECK OPTION

@ Update prohibited because of
PRODUCT_SIZE_SMALL_OR_LARGE

64

Pid PName Size
P4 Blouse 44 — | 42 |
P6 Shorts 42 — |20 |

> Updating operation

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

62

Example n.3

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, Pname, Size) AS
SELECT PId, PName, Size

FROM PRODUCT_SIZE_SMALL_OR_LARGE

WHERE Size<=46

WITH LOCAL CHECK OPTION;

2> Control is carried out on/y on the view
PRODUCT_SIZE_MEDIUM
® this is updatable with sizes below or equal to 46

65

Example n.2

> Content of the view PRODUCT_SIZE_MEDIUM

Pld PName Size
P4 Blouse 44 — | 42 |
P6 Shorts 42 — [« ||

Outside definition of the view PRODUCT_SIZE_SMALL_OR_LARGE
> Updating operation

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

CREATE VIEW PRODUCT_SIZE_SMALL_OR_LARGE (PId,
PName, Size) AS
SELECT PId, PName, Size
FROM P
B WHERE Size>=42 -
DyGWITH CHECK OPTION;

Example n.2

Pld PName Size
P4 Blouse 44 — | 42 |
P6 Shorts 42 — | 20

2> Updating operation

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

CREATE VIEW PRODUCT_SIZE_MEDIUM(PId, Pname, Size) AS
SELECT PId, PName, Size
FROM PRODUCT_SIZE_SMALL_OR_LARGE
WHERE Size<=46
BGWITH LOCAL CHECK OPTION; -

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Databases

2> Content of the view PRODUCT_SIZE_MEDIUM

Pld PName Size
P4 Blouse 44 — | 42 |
P6 Shorts 42 — | 40 |

2> Updating operation

UPDATE PRODUCT_SIZE_MEDIUM
SET SIZE=Size-2;

>> With LOCAL CHECK OPTION
® Updating allowed

Management of views

CREATE VIEW SUPPLIER_LONDON (SId, SName, #Employees)
AS

SELECT SId, SName, #Employees

FROM S

WHERE City="London’

WITH CHECK OPTION;

Management of views

Privacy management

CREATE VIEW SUPPLIER_LONDON (SId, SName, #Employees)
AS

SELECT SId, SName, #Employees

FROM S

WHERE City="London’

WITH CHECK OPTION;

2> The view SUPPLIER_LONDON selects only data
on suppliers in London
2> A user has access only to this view
® it cannot access table S

® it cannot operate on suppliers whose offices are not
in London

D[]\')’AG 7

- =

Views and privacy management

> Views enable the identification of data subsets
@ Identified by a SELECT expression
> Assigning a user access to specific views means
limiting
® ts visibility on existing tables
@ the operations it can execute

Example n.2

CREATE VIEW SUPPLIER_CODE_NAME (SId, SName) AS
SELECT SId, SName
FROM S;

7> The view SUPPLIER_CODE_NAME selects only
the code and the name of the suppliers
7 A user that has access only to this view
® Cannot access table S

@ Cannot operate on the attributes #Employees and
City

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

12

Databases

> The data dictionary contains the metadata of a
relational database

® metadata is information (data) on the data
® it describes the objects of the database (tables,
views,...)
> In the data dictionary views are defined which
limit the visibility of the individual users on the
metadata of the dictionary

@ each user can only see the information regarding
objects in the database defined by itself

> The Oracle DBMS makes numerous views
available which describe the data created by a
user

@ USER_TABLES contains metadata regarding the
user’s tables

® USER_TAB_STATISTICS contains the statistics
calculated on the user’s tables

@ USER_TAB_COL_STATISTICS contains the
statistics calculated on the columns of the user’s
tables

Elena Baralis and Tania Cerquitelli
©2013 Politecnico di Torino

Management of views

13

