Databases

| Seees = = ——

SQL language: advanced constructs

SQL for applications

SQL for applications

Introduction

SQL for applications

2> Introduction

2> Cursors

2> Updatability

2> Embedded SQL

2> Call Level Interface (CLI)
> Stored Procedures

2> Comparison of alternatives

‘ 2> Banking operations

y ® withdrawal operation from
an account through an ATM

® withdrawal operation from
an account at a bank
counter

~ Mmoo - R
wal from an ATM

2> Operations performed

® check the validity of ATM card
and PIN code

® select withdrawal operation
® specify the required amount
® verify availability

® store the operation

® update the account balance

® dispense the required amount
of money

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2> Access to a database is
required to carry out many of
the listed operations
® by executing SQL commands
2> The operations must be
executed in an appropriate
order




Databases

2> Operations performed

® verify the identity of the
customer

® communicate intention to
withdraw money

® verify availability
® store the operation
® update the account balance

® dispense the required amount
of money

SQL for applications

20 Access to a database is
required to carry out many of
the listed operations

® by executing SQL commands
2> The operations must be
executed in an appropriate
order

Example: banking operations

2> Banking operations require accessing the
database and modifying its contents
® execution of SQL commands

® customers or the bank employees are not directly
executing the SQL commands

® an application hides the execution of the SQL
commands
2> Correctly managing banking operations requires
executing a specific sequence of steps
® an application allows specifying the correct order
of execution for the operations
piG

2> Real problems can hardly ever be solved by
executing single SQL commands
2> We need applications to
® acquire and handle input data
@ user choices, parameters
® manage the application logic
® flow of the operations to execute
® return results to the user using different formats

@ non-relational data representation
@ XML document

® complex data visualization

@ graphs, reports
plile

——— 3=

S

Integrating SQL and applications

2> Applications are written in traditional high-level
programming languages
® C, C++, Java, C#, ...
® the language is called host language
2> SQL commands are used in the applications to
access the database
® queries
® updates

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2> It is necessary to integrate the SQL language
with programming languages
® SQL
@ declarative language
® programming languages
@ usually procedural




Databases SQL for applications

-~ “‘v‘, . =
T et Ny S i

.

- SQL and programming languages

2> Impedance mismatch 2> Main integration techniques
® SQL queries operate on one or more tables and ® Embedded SQL
produce a table as a result ® Call Level Interface (CLI)
® set-oriented approach ® SQL/CLI, ODBC, JDBC, OLE DB, ADO.NET, ..
® programming languages access tables by reading ® Stored procedures
rows one by one s> Classified as
® tuple-oriented approach O st
2 Possible solutions to solve the conflict @ embedded SQL, call level interface
® use cursors ® server-side
® use Ianguages_that intrinsically provide data ® stored procedures
structures storing “sets of rows”
pBic DfiG

2> The application 2> The application (or part of it)
® is outside the DBMS ® is inside the DBMS
® contains all of the application logic ® all or part of the application logic is moved inside
® requires that the DBMS execute SQL commands the DBMS
and return the result
® processes the data returned by the DBMS

2 Client-side approach
® greater independence from the DBMS employed
® |ower efficiency
2 Server-side approach
® depends on the DBMS employed
® higher efficiency

Cursors

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino



Databases SQL for applications

Impedance mismatch ' Cursors

2> Main problem in the integration between SQL and 2> If an SQL command returns a single row
programming languages ® it is sufficient to specify in which host language
® SQL queries operate on one or more tables and variable the result of the command shall be stored
produce a table as a result > If an SQL command returns a table (i.e., a set of
® set-oriented approach tuples)
® programming languages access tables by reading ® a method is required to read one tuple at a time
rows one by one from the query result (and pass it to the program)
® tuple-oriented approach ® yse of a cursor

Example no.1
)
| Fheme T Coor T Sae | Swre 5ia | pid [ oty Show the name and the number of employees for
PL | Jumper | Red | 40 | London Si | Pt [300 the supplier with code S1
P2 Jeans Green 48 Paris S1 P2_| 200 SELECT SName, #Employees
B3 Blouse Blue 48 Rome S1 P3_| 400 FROM S !
P4 Blouse Red 44 London S1 P4 | 200 WHERE SId="S1"
P5 Skirt Blue 40 Paris S1 | PS5 [100 =17
P6 Shorts Red 42 London S1 P6 | 100
S2 P1 {300 D)
s SRRRIES The query returns at most one tuple
S3 P2 ]200
SId | SName | #Employees [ City
SL | smith 20 London :i :Zi igg
S2 J 10 Pari q 0 o a a a
SRR 0 o S S 0 > It is sufficient to specify in which host language
S4 | Clark 20 London variables the selected tuple must be stored
S5 | Adams 30 Athens
DG pBc

Example no.2

2> Show the name and the number of employees of 2 Definition of a cursor with the Oracle PL/SQL
the suppliers based in London syntax
SELECT SName, #Employees CURSOR LondonSuppliers IS
FROM S SELECT SName, #Employees
WHERE City="London’; FROM S

WHERE City="London’;
2> The query returns a set of tuples

SName | #Employees
Smith 20 +«— Cursor

Clark 20 Lo

2> It is necessary to define a cursorto read each
D‘\Bj\Gt“ple from the result separately D‘\B/\G

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 4



Databases SQL for applications

Cursors

2> A cursor allows reading the individual tuples from 2> Cursors are not required
the result of a query ® for SQL queries that may return at most one tuple
® it must be associated with a specific query ® selections on the primary key
> Each SQL query that may return a set of tuples ® aggregation operations without a GROUP BY clause
must be associated with a cursor ® for update and DDL commands

® they don't generate any tuples as a result

2> The tuple currently pointed to by the cursor may
be updated or deleted
® more efficient than executing a separate SQL
update command
2> Updating a tuple with a cursor is possible only if
the view that corresponds to the associated
query may be updated
® there must exist a one-to-one correspondence
between the tuple pointed to by the cursor and the
Updatability tuple to update in the database table

2 Let us consider the SupplierData cursor 2 Let us suppose the SupplierData cursor is now
associated with the following query: associated with the following query:
SELECT DISTINCT SId, SName, #Employees SELECT SId, SName, #Employees
FROM S, SP, P FROM S
WHERE S.SId=SP.SId WHERE SId IN (SELECT SId
AND P.PId=SP.PId FROM SP, P
AND Color="Red’; WHERE SP.PId=P.PId

) ) AND Color="Red");
2> The SupplierData cursor is not updatable

2> By rewording the query, the cursor becomes 2> The two queries are equivalent
updatable ® the result of the new query is the same
2> The SupplierData cursor is updatable
piG p8G

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 5



Databases SQL for applications

22> SQL commands are “embedded” in the
application written in a traditional programming
language (C, C++, Java, ..)
® the SQL syntax is different from that of the host
language
2> SQL commands cannot be directly compiled by a
normal compiler
® they must be recognized
® they are preceded by the EXEC SQL keyword

Embedded SQL ® they must be replaced with appropriate commands
in the host programming language

recompilation

2> The precompiler
® identifies SQL commands embedded in the code
® parts preceded by EXEC SQL (1) | DBMS

® replaces the SQL commands with function calls to

specific APIs of the chosen DBMS _t
@ such functions are written in the host programming C file + function call
@ |

~. N information on the
é SQL commands

included in the
@ |  program

[ optimizer |

| execution plan

e il for the static SQL
executable file commands in the
p8G DiiG

program

language to the DBMS library
® it optionally sends the static SQL commands to the

DBMS for compilation and optimization
!

2> The precompiler is tied to a specific DBMS

, /;/4

Precompiler
2> The precompiler depends on three elements of 2> During the program execution
the system architecture 1. The program sends an SQL command to the DBMS
® host language @ it calls a DBMS library function
® DBMS

® operating system
2> The appropriate compiler for the architecture of
choice must be employed

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 6



Databases

—

Embedded SQL: execution

executable file DBMS

SQL command

ALY

SIS S S,

SQL for applications

2> During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function
2. The DBMS generates the execution plan for the
command
@ if one has already been defined, it will be retrieved

executable file DBMS
SQL command @
/17777 =
execution
plan
(A

piG

2> During the program execution
1. The program sends an SQL command to the DBMS
@ it calls a DBMS library function
2. The DBMS generates the execution plan for the
command

® if one has already been defined, it will be retrieved
3. The DBMS executes the SQL command

——— s

P

J Embedded SQL: execution

e gt N

..

executable file DBMS
SQL command @
77777 =
execution
plan
SIS SS ST

o : =
PREESE S S o=
. Embedded SQL: execution

2> During the program execution

1. The program sends an SQL command to the DBMS
@ it calls a DBMS library function

2. The DBMS generates the execution plan for the

command

® if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command
® 3 transit area is used as temporary data storage

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino



Databases SQL for applications

-——

PREESE SISO e

| Embedded SQL: execution

Embedded SQL: execution

2> During the program execution
1. The program sends an SQL command to the DBMS
® it calls a DBMS library function
SAL command 8 2. The DBMS generates the execution plan for the

executable file DBMS

@
SIS AL result > command

@ T @ if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command
@ a transit area is used as temporary data storage

@ i 5. The program processes the result

plan

SIS S S,

Example of embedded SQL code

#include <stdlib.h>

,,,,,,,,,, Declaration of host language

EXEC SQL BEGIN DECLARE SECTION EXEC SQL BEGIN DECLARE SECTION |  Variables used in the

char VarSId[6]; char VarSId[6]; SQL commands

int NumEmployees; int NumEmployees;

char City[16]; char City[16];

EXEC SQL END DECLARE SECTION EXEC SQL END DECLARE SECTION

int alpha, beta; int alpha, beta;

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL, EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,
SName CHAR(20) NOT NULL, SName CHAR(20) NOT NULL,
NumEmployees SMALLINT NOT NULL, NumEmployees SMALLINT NOT NULL,
City CHAR(15) NOT NULL); City CHAR(15) NOT NULL);

EXEC SQL BEGIN DECLARE SECTTION (| || ..

char VarSId[6]; if (alpha>beta) {
int NumEmployees; EXEC SQL SELECT NumEmployees, City
char City[16]; }:l\ll{'(l'jclz/l:gumEmployees, :City
EXEC SQL END DECLARE SECTION (Optional) WHERE SId=:VarSId;
int alpha, beta: Declaration of the tables
' g used in the application printf(*%d %s”, NumEmployees, City);

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,
SName CHAR(20) NOT NULL,
NumEmployees SMALLINT NOT NULL,
City CHAR(15) NOT NULL);

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 8



Databases

Example of embedded SQL code

+«— Declaration of the communication area
[ EXEC SQL INCLUDE SQLCA; |

if (alpha>beta) {
EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf("%d %s", NumEmployees, City);

Example of embedded SQL code

----- Host language variables
if (alpha>beta) {

EXEC SQL SELECT NumEmponeesﬁﬂﬁy v
INTO :NumEmployegs, :City
FROM S

WHERE SId=:VarSId;

printf("%d %s", NumEmployees, City);

SQL for applications

if (alpha>beta) {
EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“*%d %s", NumEmployees, City); \

y Execution of an SQL command

SQL for applications

Call Level Interface (CLI)

Call Level Interface

20 Requests are sent to the DBMS by using ad-hoc
functions of the host language
® solution based on predefined interfaces
® API, Application Programming Interface

® the SQL commands are passed to the host
language functions as parameters

® there is no precompiler

2> The host program directly includes calls to the
functions provided by the API

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2> Different solutions are available using the Call
Level Interface (CLI) paradigm
® SQL/CLI standard
® ODBC (Open DataBase Connectivity)
® proprietary SQL/CLI solution by Microsoft
® JDBC (Java Database Connectivity)
@ solution for the Java environment
® OLE DB
® ADO
® ADO.NET




Databases

Usage pattern

2> Regardless of the specific CLI solution adopted,
the interaction with the DBMS has a common
structure
® open a connection to the DBMS
® execute SQL commands
® close the connection

2> CLI solution for the JAVA environment

2> The architecture comprises

® 3 set of standard classes and interfaces
® used by the Java programmer
® independent of the DBMS

® a set of “proprietary” classes (drivers)
® implementing the standard classes and interfaces to

provide communication with a specific DBMS

® dependent on the DBMS
® invoked at runtime

® not required at the time when the application is
compiled

piG

~ ‘-‘ .. > & _—
- Loading the DBMS driver

2> The driver is specific to the DBMS employed
2> It is loaded through dynamic instantiation of the
class associated with the driver
Object Class.forName(String driverName)

® driverName contains the name of the class to be
instantiated
® e.g., “oracle.jdbc.driver.OracleDriver”

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

SQL for applications

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL command across the connection

3. Receive a result in response to the command

® i.e, aset of tuples, in the case of a SELECT
command

4. Process the result obtained from the DBMS
® ad-hoc primitives allow reading the result

5. Close the connection at the end of the working
session

2> Load the specific driver for the DBMS of choice
2> Create a connection
2> Execute SQL commands

® create a statement

® submit the command for execution

® process the result (in the case of queries)

2> Close the statement
2> Close the connection

plile

-— -

e gt N

sy

2 It's the first operation to do
2> We don't need to know at compile time which
DBMS we will be using

® the name of the driver may be read at runtime
from a configuration file

Loading the DBMS driver

10



Databases SQL for applications

Creating a connection

22 The execution of an SQL command requires the
use of a specific interface
® called Statement

2> Invoke the getConnection method of the
DriverManager class
Connection DriverManager.getConnection(String url,

String user, String password) 7 Each Statement object
O . . . . ) ) ® is associated with a connection
® contains the information required to identify the ® is created through the createStatement method of
DBMS to which we are connecting the Connection class
® the format depends on the specific driver Statement createStatement()

® user and password
® credentials for authentication

Queries

Update and DDL commands

2> Immediate query execution
® the server compiles and immediately executes the
SQL command received

2 “Prepared” query execution
® useful when the same SQL command must be
executed multiple times in the same working
session
® only the values of parameters may change
® the SQL command
@ js compiled (prepared) only once and its execution
plan is stored by the DBMS
® s executed several times throughout the session

2> The execution of the command requires invoking
the following method on a Statement object

int executeUpdate(String SQLCommand)

® SQLCommand
® the SQL command to be executed

® the method returns
® the number of processed (i.e., inserted, modified,

deleted) tuples

@ 3 value of 0 for DDL commands

2> The ResultSet object is analogous to a cursor

2> It can be requested by invoking the following

method on a Statement object ® it provides methods to
ResultSet executeQuery(String SQLCommand) ® move throughout the lines in the result
® SQLCommand ® next()
® the SQL command to be executed : first()
s meth.od ellils ralli & aa lEtlen @ bl ® extract the values of interest from the current tuple
© an object of the ResultSet type ® getInt(String attributeName)

@ getString(String attributeName)
O oooo

® it handles in the same way queries that
® return at most a single tuple
® may return multiple tuples

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino



Databases

Prepared statements

2> A “prepared” SQL command is
® compiled only once
® at the beginning of the program execution
® executed multiple times

® the current values for the parameters must be
specified before each execution

2> A useful device when the execution of the same
SQL command must be repeated several times
® it reduces execution times
® the compilation is done only once

SQL for applications

2> An object of the PreparedStatement type is used
® created by means of the following method
PreparedStatement prepareStatement(String SQLCommand)
® SQLCommand
@ it contains the SQL command to be executed

@ the “?” symbol is used as a placeholder to indicate the
presence of a parameter whose value must be specified

> Example
PreparedStatement pstmt;

pstmt=conn.prepareStatement("SELECT SId,
NEmployees FROM S WHERE City=?");

Setting parameters

2> Replace “?” symbols for the current execution

2> One of the following methods is invoked on a
PreparedStatement object
® void setInt(int parameterIndex, int value)
® void setString(int parameterIndex, String value)
o ..
® parameterIndex indicates the position of the

parameter whose value is being assigned

@ the same SQL command may include several
parameters

@ the index of the first parameter is 1
@ value indicates the value to be assigned to the

D‘%\G parameter

2> An appropriate method is invoked on the
PreparedStatement object
® SQL query
ResultSet executeQuery()
® update
int executeUpdate()
2> The two methods have no input parameters
® everything has been defined in advance
® the SQL command to be executed
® jts execution parameters

PreparedStatement pstmt=conn.prepareStatement("UPDATE P
SET Color=? WHERE PId=?");

/* Assign color Crimson to product P1 */
pstmt.setString(1, “Crimson”);
pstmt.setString(2, "P1");
pstmt.executeUpdate();

/* Assign color SteelBlue to product P5 */
pstmt.setString(1, “SteelBlue”);
pstmt.setString(2, “P5");
pstmt.executeUpdate();

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2> As soon as a statement or a connection are no
longer needed
® they must be immediately closed

2> Resources previously allocated to the statement
or the connection can be released
® by the application
® by the DBMS

12



Databases

2> Closing a statement

® is done by invoking the close method on a
Statement object
® void close()

2> The resources associated with the corresponding
SQL command are released

SQL for applications

2> Closing a connection
® is necessary when it is no longer required to
interact with the DBMS
® closes communication with the DBMS and releases
the corresponding resources

® also closes all statements associated with the
connection

® is done by invoking the close method on the
Connection object
® void close()

2> Print the codes and the number of employees of
the suppliers whose city is stored in host variable
VarCity
® the value of VarCityis provided by the user as a
parameter of the application

import java.io.*;
import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {
Connection conn;
Statement stmt;
ResultSet rs;
String query;
String VarCity;

/* Driver registration */
try {
Class.forName("oracle.jdbc.driver.OracleDriver");

catch(Exception e) {
System.err.printin("Driver unavailable: "+e);

3

import java.io.*;
import java.sgl.*;

class CitySuppliers {

static public void main(String argv[]) {
Connection conn;
Statement stmt;
ResultSet rs;
String query;
String VarCity;

/* Driver registration */
try {
Class.forName(“oracle.jdbc.driver.OracleDriver”);

Loading the driver

}
catch(Exception e) {
System.err.printin("Driver unavailable: "+e);

¥

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

try {
/* Connection to the database */
conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”",
“user123”,"pwd123");

/* Creation of a statement for immediate commands */
stmt = conn.createStatement();

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = “"+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query);

13



Databases

~——
~ W
O, S

e

try {
/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin: @127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */ \
stmt = conn.createStatement();

Connecting to the DBMS
/* Assembling a query */

VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = “"+VarCity+""";

/* Execution of the query */
rs=stmt.executeQuery(query);

SQL for applications

-——

» o,

e

try {
/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands %/
stmt = conn.createStatement(); —— Creation of a statement

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = “"+VarCity+ """;

/* Execution of the query */
rs=stmt.executeQuery(query);

_—

NI L e -

Example: selecting suppliers

try {
/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin: @127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */
stmt = conn.createStatement();

* Assembling a query */
VarCity =argv[0]; ‘

query="SELECT SId, NEmployees FROM S WHERE City = “"+VarCity+"";

/* Execution of the query */ X
rs=stmt.executeQuery(query);
Composition of an SQL query

-——

» oS

e

try {
/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin: @127.0.0.1:1521:xe",
“user123”"pwd123");

/* Creation of a statement for immediate commands */
stmt = conn.createStatement();

/* Assembling a query */
VarCity =argv[0];
query="SELECT SId, NEmployees FROM S WHERE City = “"+VarCity+"";

/* Execution of the query */
rs=stmt.executeQuery(query); |

Immediate query execution

Example: selecting suppliers

System.out.printin(“Suppliers based in “+VarCity);
/* Scan tuples in the result */
while (rs.next()) {
/* Print the current tuple */
System.out.printin(rs.getString("SId")+", "+rs.getInt("NEmployees"”));
3
/* Close resultset, statement and connection */
rs.close();
stmt.close();
conn.close();

}
catch(Exception €) {
System.err.printin(“Error: "+e);
}
}
3

Example: selecting suppliers

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

System.out.printin("Suppliers based in “+VarCity);
/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */
System.out.printin(rs.getString("SId")+", "+rs.getInt("NEmployees”)); \

b
/* Close resultset, statement and connection */ Looping over
rs.close(); the result tuples

stmt.close();
conn.close();

¥
catch(Exception e) {
System.err.printin(“Error: "+e);
¥
¥
¥

14



Databases

System.out.printin(“Suppliers based in "+VarCity);
/* Scan tuples in the result */
while (rs.next()) {

/* Print the current tuple */

System.out.printin(rs.getString("SId")+", "+rs.getInt("NEmployees™));
}
/* Close resultset, statement and connection */
rs.close();
stmt.close();
conn.close();

4——— Closing resultset,
statement and connection

catch(Exception e) {
System.err.printin(“Error: "+e);
}
}
}

Defining a transaction

2> Connections are implicitly created with the auto-
commit mode enabled
® after each successful execution of an SQL
command, a commit is automatically executed
2> When it is necessary to execute a commit only
after a sequence of SQL commands has been
successfully executed
® 3 single commit is executed after the execution of
all commands

® the commit must be managed in a non-automatic
fashion

2 If autocommit is disabled

® commit and rollback operations must be explicitly
requested by the programmer
® commit
void commit();
@ rollback
void rollback();
® such methods are invoked on the corresponding
connection

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

SQL for applications

-—

-

RESESE LSO . e

..

Updatable ResultSets

2> It is possible to create an updatable ResultSet
® the execution of updates on the database is more
efficient
® it is similar to an updatable cursor

® there must be a one-to-one correspondence
between the tuples in the result set and the tuples
in the database tables

P— - ¥ 3
g R &- 1 =
I & ~ -

. Managing transactions

2> The commit mode can be managed by invoking
the setAutoCommit() method on the connection
void setAutoCommit(boolean autoCommit);
® parameter autoCommit
@ true to enable autocommit (default)
® false to disable autocommit

Stored Procedures

15



Databases

SQL for applications

Stored procedures

2> A stored procedure is a function or a procedure
defined inside the DBMS
® it is stored in the data dictionary
® jt is part of the database schema
2> It may be used like a predefined SQL command
® it may have execution parameters
2> It contains both application code and SQL
commands

® application code and SQL commands are tightly
coupled to each other

2> The language used to define a stored procedure
® is a procedural extension of the SQL language
® depends on the DBMS
@ different products may offer different languages

® the expressiveness of the language may vary
according to the product

Stored procedures: execution

2 Stored procedures are integrated in the DBMS
® server-side approach
2> Performance is better compared to embedded
SQL and CLI
® each stored procedure is compiled and optimized
only once
® immediately after its definition
® or when it is invoked for the first time

2> Different languages are available to define stored
procedures
® PL/SQL
® Oracle
® SQL/PL
® DB2
® Transact-SQL
® Microsoft SQL Server
® PL/pgSQL
® PostgreSQL

plile

~ WSO y -
PRI~ SO
N Connection to the DBMS

2> No connection to the DBMS is needed from
within a stored procedure

® the DBMS executing the SQL commands also
stores and executes the stored procedure

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

-— -

Managing SQL commands

e gt N

sy

2 It is possible to reference variables or parameters
in the SQL commands used in stored procedures
® the syntax depends on the language used
2> To read the result of a query that returns a set of
tuples
® a cursor must be defined
® similar to embedded SQL




Databases

2> Creation of a stored procedure in Oracle

CREATE [OR REPLACE] PROCEDURE StoredProcedureName
[(ParameterlList)]
IS (SQLCommand | PL/SQL code);

2> A stored procedure may be associated with
® a single SQL command
® a block of code written in PL/SQL

tore

SQL for applications

SQL for applications

Comparison of alternatives

"“‘vvwb " . =
T et ey Nt

.

d procedures

2> The techniques proposed for the integration of the
SQL language with applications have different
features
2> There is no winner: no one approach is always
better than the others
® it depends on the type of application
® it depends on the characteristics of the databases
@ distributed, heterogeneous
2> Mixed solutions may be adopted

® invoking a stored procedure through CLI or
embedded SQL

- Embedded SQL vs. Call Level Interface

>> Embedded SQL
® (+) it precompiles static SQL queries
® more efficient
® (-) it depends on the adopted DBMS and operating
system
@ due to the presence of a compiler

® (-) it normally does not allow access to multiple
databases at the same time

® or it is a complex operation

2 Call Level Interface

® (+) independent of the adopted DBMS
® only at compile time

® the communication library (driver) implements a
standard interface

@ the internal mechanism depends on the DBMS
® the driver is loaded and invoked dynamically at
runtime

® (+) it does not require a precompiler

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2> Call Level Interface
® (+) it allows access to multiple databases from
within the same application
® databases may be heterogeneous
® (-) it uses dynamic SQL
® |ower efficiency
® (-) it usually supports a subset of the SQL language




Databases

Stored procedures vs. client-side approaches

2> Stored procedures
® (+) greater efficiency
® jt exploits the tight integration with the DBMS
® jt reduces data exchange over the network
® procedures are precompiled

SQL for applications

~ “‘,‘,, % T — . = -
o "W-Q» . -
3 Stored procedures vs. client-side approaches

2> Stored procedures
® (-) they depend on the DBMS
® use of the DBMS ad-hoc language
® ysually not portable from one DBMS to another
® (-) languages offer fewer functionalities than
traditional languages
@ no functions available to create complex data
visualizations of results
® graphs and reports
® [imited input management

Stored procedures vs. client-side approaches

2 Client-side approaches
® (+) based on traditional programming languages
@ well known to programmers
® more efficient compilers

@ wide range of input and output management
functions

® (+) greater independence from the adopted DBMS
when writing code
® only true of CLI-based approaches
® (+) possibility to access heterogeneous databases

piG

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino

2 Client-side approaches
® (-) lower efficiency
® |ower degree of integration with the DBMS
® compilation of SQL commands at runtime
@ especially for CLI-based approaches

18



