
Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 1

DB
MG

SQL language: advanced constructs

SQL for applications

DB
MG

SQL for applications

Introduction

Cursors

Updatability

Embedded SQL

Call Level Interface (CLI)

Stored Procedures

Comparison of alternatives

DB
MG

SQL for applications

Introduction

DB
MG

Example application

Banking operations

withdrawal operation from
an account through an ATM

withdrawal operation from
an account at a bank
counter

DB
MG

Withdrawal from an ATM

Operations performed

check the validity of ATM card
and PIN code

select withdrawal operation

specify the required amount

verify availability

store the operation

update the account balance

dispense the required amount
of money

DB
MG

Withdrawal from an ATM

Access to a database is
required to carry out many of
the listed operations

by executing SQL commands

The operations must be
executed in an appropriate
order

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 2

DB
MG

Withdrawal at a bank counter

Operations performed

verify the identity of the
customer

communicate intention to
withdraw money

verify availability

store the operation

update the account balance

dispense the required amount
of money

DB
MG

Withdrawal at a bank counter

Access to a database is
required to carry out many of
the listed operations

by executing SQL commands

The operations must be
executed in an appropriate
order

DB
MG

Example: banking operations

Banking operations require accessing the
database and modifying its contents

execution of SQL commands

customers or the bank employees are not directly
executing the SQL commands

an application hides the execution of the SQL
commands

Correctly managing banking operations requires
executing a specific sequence of steps

an application allows specifying the correct order
of execution for the operations

DB
MG

Applications and SQL

Real problems can hardly ever be solved by
executing single SQL commands

We need applications to

acquire and handle input data

user choices, parameters

manage the application logic

flow of the operations to execute

return results to the user using different formats

non-relational data representation

XML document

complex data visualization

graphs, reports

DB
MG

Integrating SQL and applications

Applications are written in traditional high-level
programming languages

C, C++, Java, C#, ...

the language is called host language

SQL commands are used in the applications to
access the database

queries

updates

DB
MG

Integrating SQL and applications

It is necessary to integrate the SQL language
with programming languages

SQL

declarative language

programming languages

usually procedural

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 3

DB
MG

Impedance mismatch

Impedance mismatch

SQL queries operate on one or more tables and
produce a table as a result

set-oriented approach

programming languages access tables by reading
rows one by one

tuple-oriented approach

Possible solutions to solve the conflict

use cursors

use languages that intrinsically provide data
structures storing “sets of rows”

DB
MG

SQL and programming languages

Main integration techniques

Embedded SQL

Call Level Interface (CLI)

SQL/CLI, ODBC, JDBC, OLE DB, ADO.NET, ..

Stored procedures

Classified as

client-side

embedded SQL, call level interface

server-side

stored procedures

DB
MG

Client-side approach

The application

is outside the DBMS

contains all of the application logic

requires that the DBMS execute SQL commands
and return the result

processes the data returned by the DBMS

DB
MG

Server-side approach

The application (or part of it)

is inside the DBMS

all or part of the application logic is moved inside
the DBMS

DB
MG

Client-side vs. server-side approach

Client-side approach

greater independence from the DBMS employed

lower efficiency

Server-side approach

depends on the DBMS employed

higher efficiency

DB
MG

SQL for applications

Cursors

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 4

DB
MG

Impedance mismatch

Main problem in the integration between SQL and
programming languages

SQL queries operate on one or more tables and
produce a table as a result

set-oriented approach

programming languages access tables by reading
rows one by one

tuple-oriented approach

DB
MG

Cursors

If an SQL command returns a single row

it is sufficient to specify in which host language
variable the result of the command shall be stored

If an SQL command returns a table (i.e., a set of
tuples)

a method is required to read one tuple at a time
from the query result (and pass it to the program)

use of a cursor

DB
MG

Supplier and product DB

S

SP
SId PId Qty

S1 P1 300

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S1 P6 100

S2 P1 300

S2 P2 400

S3 P2 200

S4 P3 200

S4 P4 300

S4 P5 400

P
PId PName Color Size Store

P1 Jumper Red 40 London
P2 Jeans Green 48 Paris
P3 Blouse Blue 48 Rome
P4 Blouse Red 44 London
P5 Skirt Blue 40 Paris
P6 Shorts Red 42 London

SId SName #Employees City

S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

DB
MG

Example no.1

Show the name and the number of employees for
the supplier with code S1

The query returns at most one tuple

It is sufficient to specify in which host language
variables the selected tuple must be stored

SELECT SName, #Employees
FROM S
WHERE SId=‘S1’;

SName #Employees
Smith 20

DB
MG

Example no.2

Show the name and the number of employees of
the suppliers based in London

The query returns a set of tuples

It is necessary to define a cursor to read each
tuple from the result separately

SELECT SName, #Employees
FROM S
WHERE City=‘London’;

SName #Employees
Smith 20
Clark 20

Cursor

DB
MG

Example no.2

Definition of a cursor with the Oracle PL/SQL
syntax

CURSOR LondonSuppliers IS
SELECT SName, #Employees
FROM S
WHERE City=‘London’;

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 5

DB
MG

Cursors

A cursor allows reading the individual tuples from
the result of a query

it must be associated with a specific query

Each SQL query that may return a set of tuples
must be associated with a cursor

DB
MG

Cursors

Cursors are not required

for SQL queries that may return at most one tuple

selections on the primary key

aggregation operations without a GROUP BY clause

for update and DDL commands

they don’t generate any tuples as a result

DB
MG

SQL for applications

Updatability

DB
MG

Updatability

The tuple currently pointed to by the cursor may
be updated or deleted

more efficient than executing a separate SQL
update command

Updating a tuple with a cursor is possible only if
the view that corresponds to the associated
query may be updated

there must exist a one-to-one correspondence
between the tuple pointed to by the cursor and the
tuple to update in the database table

DB
MG

Example: non-updatable cursor

Let us consider the SupplierData cursor
associated with the following query:

The SupplierData cursor is not updatable

By rewording the query, the cursor becomes
updatable

SELECT DISTINCT SId, SName, #Employees
FROM S, SP, P
WHERE S.SId=SP.SId

AND P.PId=SP.PId
AND Color=‘Red’;

DB
MG

Example: updatable cursor

Let us suppose the SupplierData cursor is now
associated with the following query:

The two queries are equivalent

the result of the new query is the same

The SupplierData cursor is updatable

SELECT SId, SName, #Employees
FROM S
WHERE SId IN (SELECT SId

FROM SP, P
WHERE SP.PId=P.PId

AND Color=‘Red’);

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 6

DB
MG

SQL for applications

Embedded SQL

DB
MG

Embedded SQL

SQL commands are “embedded” in the
application written in a traditional programming
language (C, C++, Java, ..)

the SQL syntax is different from that of the host
language

SQL commands cannot be directly compiled by a
normal compiler

they must be recognized

they are preceded by the EXEC SQL keyword

they must be replaced with appropriate commands
in the host programming language

DB
MG

Precompilation

The precompiler

identifies SQL commands embedded in the code

parts preceded by EXEC SQL

replaces the SQL commands with function calls to
specific APIs of the chosen DBMS

such functions are written in the host programming
language

it optionally sends the static SQL commands to the
DBMS for compilation and optimization

The precompiler is tied to a specific DBMS

DB
MG

Embedded SQL: compilation

C file + SQL

Precompiler

C file + function calls
to the DBMS library

C compiler

executable file

DBMS

information on the
SQL commands
included in the
program

Optimizer

execution plan
for the static SQL
commands in the
program

32

1

DB
MG

Precompiler

The precompiler depends on three elements of
the system architecture

host language

DBMS

operating system

The appropriate compiler for the architecture of
choice must be employed

DB
MG

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 7

DB
MG

Embedded SQL: execution

executable file DBMS

SQL command

1

DB
MG

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

DB
MG

Embedded SQL: execution

DBMS

SQL command

execution
plan

1
2

executable file

DB
MG

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

DB
MG

Embedded SQL: execution

executable file

data

DBMS

SQL command

execution
plan

1
2

3

DB
MG

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command

a transit area is used as temporary data storage

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 8

DB
MG

Embedded SQL: execution

executable file

data

DBMS

SQL command

result

execution
plan

1
2

3

4

DB
MG

Embedded SQL: execution

During the program execution

1. The program sends an SQL command to the DBMS

it calls a DBMS library function

2. The DBMS generates the execution plan for the
command

if one has already been defined, it will be retrieved

3. The DBMS executes the SQL command

4. The DBMS returns the result of the SQL command

a transit area is used as temporary data storage

5. The program processes the result

DB
MG

Example of embedded SQL code

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

..... DB
MG

Example of embedded SQL code

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

.....

Declaration of host language
variables used in the
SQL commands

DB
MG

#include <stdlib.h>

.....

EXEC SQL BEGIN DECLARE SECTION

char VarSId[6];

int NumEmployees;

char City[16];

EXEC SQL END DECLARE SECTION

int alpha, beta;

....

EXEC SQL DECLARE S TABLE (SId CHAR(5) NOT NULL,

SName CHAR(20) NOT NULL,

NumEmployees SMALLINT NOT NULL,

City CHAR(15) NOT NULL);

.....

Example of embedded SQL code

(Optional)
Declaration of the tables
used in the application

DB
MG

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 9

DB
MG

Example of embedded SQL code

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Declaration of the communication area

DB
MG

Example of embedded SQL code

Execution of an SQL command

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

DB
MG

EXEC SQL INCLUDE SQLCA;

.....

if (alpha>beta) {

EXEC SQL SELECT NumEmployees, City
INTO :NumEmployees, :City
FROM S
WHERE SId=:VarSId;

printf(“%d %s”, NumEmployees, City);

......

}

.....

Example of embedded SQL code

Host language variables

DB
MG

SQL for applications

Call Level Interface (CLI)

DB
MG

Call Level Interface

Requests are sent to the DBMS by using ad-hoc
functions of the host language

solution based on predefined interfaces

API, Application Programming Interface

the SQL commands are passed to the host
language functions as parameters

there is no precompiler

The host program directly includes calls to the
functions provided by the API

DB
MG

Call Level Interface

Different solutions are available using the Call
Level Interface (CLI) paradigm

SQL/CLI standard

ODBC (Open DataBase Connectivity)

proprietary SQL/CLI solution by Microsoft

JDBC (Java Database Connectivity)

solution for the Java environment

OLE DB

ADO

ADO.NET

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 10

DB
MG

Usage pattern

Regardless of the specific CLI solution adopted,
the interaction with the DBMS has a common
structure

open a connection to the DBMS

execute SQL commands

close the connection

DB
MG

Interaction with the DBMS

1. Call an API primitive to create a connection to
the DBMS

2. Send an SQL command across the connection

3. Receive a result in response to the command

i.e., a set of tuples, in the case of a SELECT
command

4. Process the result obtained from the DBMS

ad-hoc primitives allow reading the result

5. Close the connection at the end of the working
session

DB
MG

JDBC (Java DataBase Connectivity)

CLI solution for the JAVA environment

The architecture comprises

a set of standard classes and interfaces

used by the Java programmer

independent of the DBMS

a set of “proprietary” classes (drivers)

implementing the standard classes and interfaces to
provide communication with a specific DBMS

dependent on the DBMS

invoked at runtime

not required at the time when the application is
compiled

DB
MG

JDBC: interaction with the DBMS

Load the specific driver for the DBMS of choice

Create a connection

Execute SQL commands

create a statement

submit the command for execution

process the result (in the case of queries)

Close the statement

Close the connection

DB
MG

Loading the DBMS driver

The driver is specific to the DBMS employed

It is loaded through dynamic instantiation of the
class associated with the driver

Object Class.forName(String driverName)

driverName contains the name of the class to be
instantiated

e.g., “oracle.jdbc.driver.OracleDriver”

DB
MG

Loading the DBMS driver

It’s the first operation to do

We don’t need to know at compile time which
DBMS we will be using

the name of the driver may be read at runtime
from a configuration file

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 11

DB
MG

Creating a connection

Invoke the getConnection method of the
DriverManager class

Connection DriverManager.getConnection(String url,
String user, String password)

url

contains the information required to identify the
DBMS to which we are connecting

the format depends on the specific driver

user and password

credentials for authentication

DB
MG

Executing SQL commands

The execution of an SQL command requires the
use of a specific interface

called Statement

Each Statement object

is associated with a connection

is created through the createStatement method of
the Connection class

Statement createStatement()

DB
MG

Update and DDL commands

The execution of the command requires invoking
the following method on a Statement object

int executeUpdate(String SQLCommand)

SQLCommand

the SQL command to be executed

the method returns

the number of processed (i.e., inserted, modified,
deleted) tuples

a value of 0 for DDL commands

DB
MG

Queries

Immediate query execution

the server compiles and immediately executes the
SQL command received

“Prepared” query execution

useful when the same SQL command must be
executed multiple times in the same working
session

only the values of parameters may change

the SQL command

is compiled (prepared) only once and its execution
plan is stored by the DBMS

is executed several times throughout the session

DB
MG

Immediate execution

It can be requested by invoking the following
method on a Statement object

ResultSet executeQuery(String SQLCommand)

SQLCommand

the SQL command to be executed

the method always returns a collection of tuples

an object of the ResultSet type

it handles in the same way queries that

return at most a single tuple

may return multiple tuples

DB
MG

Reading the result

The ResultSet object is analogous to a cursor

it provides methods to

move throughout the lines in the result

next()

first()

...

extract the values of interest from the current tuple

getInt(String attributeName)

getString(String attributeName)

....

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 12

DB
MG

Prepared statements

A “prepared” SQL command is

compiled only once

at the beginning of the program execution

executed multiple times

the current values for the parameters must be
specified before each execution

A useful device when the execution of the same
SQL command must be repeated several times

it reduces execution times

the compilation is done only once

DB
MG

Preparing the Statement

An object of the PreparedStatement type is used

created by means of the following method

PreparedStatement prepareStatement(String SQLCommand)

SQLCommand

it contains the SQL command to be executed

the “?” symbol is used as a placeholder to indicate the
presence of a parameter whose value must be specified

Example

PreparedStatement pstmt;

pstmt=conn.prepareStatement(“SELECT SId,
NEmployees FROM S WHERE City=?”);

DB
MG

Setting parameters

Replace “?” symbols for the current execution

One of the following methods is invoked on a
PreparedStatement object

void setInt(int parameterIndex, int value)

void setString(int parameterIndex, String value)

...

parameterIndex indicates the position of the
parameter whose value is being assigned

the same SQL command may include several
parameters

the index of the first parameter is 1

value indicates the value to be assigned to the
parameter DB

MG

Executing the prepared command

An appropriate method is invoked on the
PreparedStatement object

SQL query

ResultSet executeQuery()

update

int executeUpdate()

The two methods have no input parameters

everything has been defined in advance

the SQL command to be executed

its execution parameters

DB
MG

Example: prepared statements

.....

PreparedStatement pstmt=conn.prepareStatement(“UPDATE P
SET Color=? WHERE PId=?”);

/* Assign color Crimson to product P1 */

pstmt.setString(1, “Crimson”);

pstmt.setString(2, “P1”);

pstmt.executeUpdate();

/* Assign color SteelBlue to product P5 */

pstmt.setString(1, “SteelBlue”);

pstmt.setString(2, “P5”);

pstmt.executeUpdate();

DB
MG

Closing statement and connection

As soon as a statement or a connection are no
longer needed

they must be immediately closed

Resources previously allocated to the statement
or the connection can be released

by the application

by the DBMS

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 13

DB
MG

Closing a statement

Closing a statement

is done by invoking the close method on a
Statement object

void close()

The resources associated with the corresponding
SQL command are released

DB
MG

Closing a connection

Closing a connection

is necessary when it is no longer required to
interact with the DBMS

closes communication with the DBMS and releases
the corresponding resources

also closes all statements associated with the
connection

is done by invoking the close method on the
Connection object

void close()

DB
MG

Example: selecting suppliers

Print the codes and the number of employees of
the suppliers whose city is stored in host variable
VarCity

the value of VarCity is provided by the user as a
parameter of the application

DB
MG

Example: selecting suppliers

import java.io.*;

import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {

Connection conn;

Statement stmt;

ResultSet rs;

String query;

String VarCity;

/* Driver registration */

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

}

catch(Exception e) {

System.err.println("Driver unavailable: "+e);

}

DB
MG

Example: selecting suppliers

import java.io.*;

import java.sql.*;

class CitySuppliers {

static public void main(String argv[]) {

Connection conn;

Statement stmt;

ResultSet rs;

String query;

String VarCity;

/* Driver registration */

try {

Class.forName(“oracle.jdbc.driver.OracleDriver”);

}

catch(Exception e) {

System.err.println(“Driver unavailable: ”+e);

}

Loading the driver

DB
MG

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”,
“user123”,“pwd123”);

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query=“SELECT SId, NEmployees FROM S WHERE City = ‘”+VarCity+“’”;

/* Execution of the query */

rs=stmt.executeQuery(query);

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 14

DB
MG

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”,
“user123”,“pwd123”);

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query=“SELECT SId, NEmployees FROM S WHERE City = ‘”+VarCity+“’”;

/* Execution of the query */

rs=stmt.executeQuery(query);

Connecting to the DBMS

DB
MG

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”,
“user123”,“pwd123”);

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query=“SELECT SId, NEmployees FROM S WHERE City = ‘”+VarCity+ “’”;

/* Execution of the query */

rs=stmt.executeQuery(query);

Creation of a statement

DB
MG

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”,
“user123”,“pwd123”);

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query=“SELECT SId, NEmployees FROM S WHERE City = ‘”+VarCity+“’”;

/* Execution of the query */

rs=stmt.executeQuery(query);

Composition of an SQL query

DB
MG

Example: selecting suppliers

try {

/* Connection to the database */

conn=DriverManager.getConnection(“jdbc:oracle:thin:@127.0.0.1:1521:xe”,
“user123”,“pwd123”);

/* Creation of a statement for immediate commands */

stmt = conn.createStatement();

/* Assembling a query */

VarCity =argv[0];

query=“SELECT SId, NEmployees FROM S WHERE City = ‘”+VarCity+“’”;

/* Execution of the query */

rs=stmt.executeQuery(query);

Immediate query execution

DB
MG

Example: selecting suppliers

System.out.println(“Suppliers based in ”+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString(“SId”)+“, ”+rs.getInt(“NEmployees”));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println(“Error: ”+e);

}

}

}

DB
MG

Example: selecting suppliers

System.out.println(“Suppliers based in ”+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString(“SId”)+“, ”+rs.getInt(“NEmployees”));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println(“Error: ”+e);

}

}

}

Looping over
the result tuples

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 15

DB
MG

Example: selecting suppliers

System.out.println(“Suppliers based in ”+VarCity);

/* Scan tuples in the result */

while (rs.next()) {

/* Print the current tuple */

System.out.println(rs.getString(“SId”)+“, ”+rs.getInt(“NEmployees”));

}

/* Close resultset, statement and connection */

rs.close();

stmt.close();

conn.close();

}

catch(Exception e) {

System.err.println(“Error: ”+e);

}

}

}

Closing resultset,
statement and connection

DB
MG

Updatable ResultSets

It is possible to create an updatable ResultSet

the execution of updates on the database is more
efficient

it is similar to an updatable cursor

there must be a one-to-one correspondence
between the tuples in the result set and the tuples
in the database tables

DB
MG

Defining a transaction

Connections are implicitly created with the auto-
commit mode enabled

after each successful execution of an SQL
command, a commit is automatically executed

When it is necessary to execute a commit only
after a sequence of SQL commands has been
successfully executed

a single commit is executed after the execution of
all commands

the commit must be managed in a non-automatic
fashion

DB
MG

Managing transactions

The commit mode can be managed by invoking
the setAutoCommit() method on the connection

void setAutoCommit(boolean autoCommit);

parameter autoCommit

true to enable autocommit (default)

false to disable autocommit

DB
MG

Managing transactions

If autocommit is disabled

commit and rollback operations must be explicitly
requested by the programmer

commit

void commit();

rollback

void rollback();

such methods are invoked on the corresponding
connection

DB
MG

SQL for applications

Stored Procedures

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 16

DB
MG

Stored procedures

A stored procedure is a function or a procedure
defined inside the DBMS

it is stored in the data dictionary

it is part of the database schema

It may be used like a predefined SQL command

it may have execution parameters

It contains both application code and SQL
commands

application code and SQL commands are tightly
coupled to each other

DB
MG

Stored procedures: language

The language used to define a stored procedure

is a procedural extension of the SQL language

depends on the DBMS

different products may offer different languages

the expressiveness of the language may vary
according to the product

DB
MG

Stored procedures: execution

Stored procedures are integrated in the DBMS

server-side approach

Performance is better compared to embedded
SQL and CLI

each stored procedure is compiled and optimized
only once

immediately after its definition

or when it is invoked for the first time

DB
MG

Languages for stored procedures

Different languages are available to define stored
procedures

PL/SQL

Oracle

SQL/PL

DB2

Transact-SQL

Microsoft SQL Server

PL/pgSQL

PostgreSQL

DB
MG

Connection to the DBMS

No connection to the DBMS is needed from
within a stored procedure

the DBMS executing the SQL commands also
stores and executes the stored procedure

DB
MG

Managing SQL commands

It is possible to reference variables or parameters
in the SQL commands used in stored procedures

the syntax depends on the language used

To read the result of a query that returns a set of
tuples

a cursor must be defined

similar to embedded SQL

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 17

DB
MG

Stored procedures in Oracle

Creation of a stored procedure in Oracle

A stored procedure may be associated with

a single SQL command

a block of code written in PL/SQL

CREATE [OR REPLACE] PROCEDURE StoredProcedureName
[(ParameterList)]
IS (SQLCommand |PL/SQL code);

DB
MG

SQL for applications

Comparison of alternatives

DB
MG

Embedded SQL, CLI and Stored procedures

The techniques proposed for the integration of the
SQL language with applications have different
features

There is no winner: no one approach is always
better than the others

it depends on the type of application

it depends on the characteristics of the databases

distributed, heterogeneous

Mixed solutions may be adopted

invoking a stored procedure through CLI or
embedded SQL

DB
MG

Embedded SQL vs. Call Level Interface

Embedded SQL

(+) it precompiles static SQL queries

more efficient

(-) it depends on the adopted DBMS and operating
system

due to the presence of a compiler

(-) it normally does not allow access to multiple
databases at the same time

or it is a complex operation

DB
MG

Embedded SQL vs. Call Level Interface

Call Level Interface

(+) independent of the adopted DBMS

only at compile time

the communication library (driver) implements a
standard interface

the internal mechanism depends on the DBMS

the driver is loaded and invoked dynamically at
runtime

(+) it does not require a precompiler

DB
MG

Embedded SQL vs. Call Level Interface

Call Level Interface

(+) it allows access to multiple databases from
within the same application

databases may be heterogeneous

(-) it uses dynamic SQL

lower efficiency

(-) it usually supports a subset of the SQL language

Databases SQL for applications

Elena Baralis and Tania Cerquitelli
© 2013 Politecnico di Torino 18

DB
MG

Stored procedures vs. client-side approaches

Stored procedures

(+) greater efficiency

it exploits the tight integration with the DBMS

it reduces data exchange over the network

procedures are precompiled

DB
MG

Stored procedures vs. client-side approaches

Stored procedures

(-) they depend on the DBMS

use of the DBMS ad-hoc language

usually not portable from one DBMS to another

(-) languages offer fewer functionalities than
traditional languages

no functions available to create complex data
visualizations of results

graphs and reports

limited input management

DB
MG

Stored procedures vs. client-side approaches

Client-side approaches

(+) based on traditional programming languages

well known to programmers

more efficient compilers

wide range of input and output management
functions

(+) greater independence from the adopted DBMS
when writing code

only true of CLI-based approaches

(+) possibility to access heterogeneous databases

DB
MG

Client-side approaches

(-) lower efficiency

lower degree of integration with the DBMS

compilation of SQL commands at runtime

especially for CLI-based approaches

Stored procedures vs. client-side approaches

