
Extends algebra of sets for the relational model
Defines a set of operators that operate on
relations and whose result is a relation
It satisfies the closure property
is also a refation any algebraic operation on relations
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Σ Set operators

- union (\cup)
- intersection (\cap)
- difference (-)
- cartesian product (\times)
Σ Relational operators
- selection (σ)
- projection (π)
- join (\bowtie)
- division (/)
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}}$

			Example of relations	
Courses	CCode	CName	Semester	Profid
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Professors				
	ProfiD	PName	Department	
	D102	Green	Computer engineering	
	D105	Black	Computer engineering	
$\mathrm{D}_{1}^{B}{ }^{\text {G }}$	D104	White	Department of electronics	
				deat

Relational algebra

Selection

\square The selection extracts a "horizontal" subset from the relation

- It operates a horizontal factorisation of the relation

$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$
9

Selection: example

Σ Find the courses held in the second semester

Selection: definition

$$
R=\sigma_{p} A
$$

\triangle The selection generates a relation R

- With the same schema as A
- Containing all the tuples of relation A because of which predicate p is true
\square Predicate p is a boolean expression (operators \wedge, \vee, \neg) of expressions of comparison between attributes or between attributes and constants
- p: City= ‘Turin’ \wedge Age>18
- p: ReturnDate>DeliveryDate+10

Selection: example

Σ Find the courses held in the second semester

Courses

CCode	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
	F1401	Electronics	1

Find the names of professors

Projection: example (n. 1)

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Projection: example (n. 2)

Σ Find the names of the departments in which at least one professor is present

$$
\mathrm{R}=\pi_{\text {Department }} \text { Professors }
$$

Professors

Proiection: definition

$$
\mathrm{R}=\pi_{\mathrm{L}} \mathrm{~A}
$$

\triangle The projection generates a relation R

- Whose schema is the list of attributes L (subset of A's schema)
- Containing all of the tuples present in A
Σ The duplicates caused by the exclusion of the attributes not contained in L are deleted
- If L includes a candidate key, there are no duplicates
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Selection+ projection: example

Σ Select the names of courses in the second semester

	Selection + projection: example				
	CCode	CName	Semester	Profid	
	M4880	Digital systems	2	D104	
	F0410	Databases	2	D102	
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$	Projection				
	R	CName			
		Digital systems			
		Databses			
	25				

Selection + projection: example

\sum Select the names of courses in the second semester
$\mathrm{R}=\pi_{\text {CName }}\left(\sigma_{\text {Semester }=2}\right.$ Courses $)$

R
${ }^{\text {II }} \pi_{\text {CName }}$
$\sigma_{\text {Semester=2 }}$
Courses
Courses

CCode	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
$\mathrm{M}_{\mathrm{M}} \mathrm{G}$	F0410	Databases	2

Selection+projection: wrong solution
Courses

CCode		CName	Semester
ProfID			
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Projection

	CName
	Computer science
	Digital systems
	Electronics
	Databses

| CName |
| :--- | :--- |
| \qquadComputer science
 Digital systems
 Electronics
 Databses |

Cartesian product: example

Σ Find the Cartesian product of courses and professors
$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Courses			
	CCode	CName	Semester

\hline M4880 \& Digital systems \& 2 \& D104

\hline F1401 \& Electronics \& 1 \& D104

\hline F0410 \& Databases \& 2 \& D102

\hline\end{array}\right.\)

Professors

		Cartesian product: example				
R						
$\begin{array}{\|l} \begin{array}{l} \text { Courses } \\ \text { ccode } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Courses. } \\ & \text { CName } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Courses. } \\ \text { Semester } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Courses. } \\ & \text { Profid } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Professors. } \\ \text { ProfiD } \end{array} \\ & \hline \end{aligned}$	Professors PRame	$\begin{array}{\|l} \hline \begin{array}{l} \text { Professors. } \\ \text { Departmen } \end{array} \\ \hline \end{array}$
M2170	$\begin{aligned} & \text { Computer } \\ & \text { science } \end{aligned}$	1	D102	${ }^{\text {D102 }}$	Green	$\begin{aligned} & \text { Computer } \\ & \text { engineering } \end{aligned}$
M2170	$\begin{aligned} & \text { Computer } \\ & \text { science } \end{aligned}$	1	D102	D105	Black	Icomputer
M2170	$\begin{aligned} & \text { Computer } \\ & \text { science } \end{aligned}$	1	D102	D104	White	$\begin{aligned} & \text { Department } \\ & \text { of electronics } \end{aligned}$
$\mathrm{D}_{\mathbb{M}}^{\mathrm{B}} \mathrm{G}$						

Cartesian product: definition

$$
R=A \times B
$$

Σ The Cartesian product of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing all the pairs formed by a tuple of A and a tuple of B
Σ The Cartesian product is
- commutative
- $A \times B=B \times A$
- associative
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}}$
- $(A \times B) \times C=A \times(B \times C)$

Cartesian product: example

Σ Find the Cartesian product of courses and professors

		Hik between reatons				
R						
Courses CCode	Courses. CName	Courses. SemesterCourses. Profid Professors. Profid Professors PName				Professors. Departmen
M2170	Computer science	1	D102	D102	Green	Computer engineering
M2170	Computer science	1	D102	D105	Black	Icomputer engineering
M2170	Computer science	1	D102	D104	White	Department of electronics
M4880	Digital systems	2	D104	D102	Green	Computer engineering
M4880	Digital systems	2	D104	D105	Black	Icomputer engineering
M4880	Digital systems	2	D104	D104	White	Department of electronics
...	\ldots	...
						39

\square The join of two relations A and B generates all the pairs formed by a tuple of A and a tuple of B that are "semantically linked"

| Courses | CCode CName Semester ProfID
 M2170 Computer science 1 D102
 M4880 Digital systems 2 D104
 F1401 Electronics 1 D104
 F0410 Databases 2 D102 |
| :--- | :--- | :--- | :--- |

Professors

ProfID	PName	Department
D102	Green	Computer engineering
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$	Black	Computer engineering
D104	White	Department of electronics

				Join: example		
R						
$\begin{array}{\|c} \text { Courses } \\ \text { cocode } \end{array}$	Curses Cume	${ }_{\text {Courses }}^{\substack{\text { Ceneser }}}$	$\underbrace{}_{\substack{\text { courses } \\ \text { porid }}}$	$\underbrace{\text { profil }}_{\text {Profesors. }}$	Promesors.	Prememer
M2170	computer		${ }^{0.02}$	${ }^{0.02}$	Grien	${ }_{\text {comer }}^{\substack{\text { computer } \\ \text { enjoering }}}$
m4880	Diotal	2	0.104	${ }^{0.104}$	White	Pepartent
F1401	Electoric		${ }^{104}$	0.104	White	Oematment
F940	Data		0102	0102	Green	
\square NB: Professor (D105,Black,Computer engineering), who does not hold any courses does not appear in the result of the join						
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}^{\text {a }}$						${ }^{45}$

\square The join is a derived operator

- It can be expressed using operators $\mathrm{x}, \sigma_{\mathrm{p}}, \pi_{\mathrm{L}}$
Σ The join is defined separately as it expresses synthetically many recurrent operations in the interrogations
Σ There are different kinds of joins
- natural join
- theta-join (and its subcase equi-join)
- semi-join

Natural join: definition	
$R=A \bowtie B$	
\triangle The natural join of two relations A and B generates a relation R	
- whose schema is	
- the attributes which are present in A's schema and not in B's	
- the attributes present in B's schema and not in $\mathrm{A}^{\prime} \mathrm{s}$ - a single copy of common attributes (with the same	
	- containing all of the pairs made up of a tuple of A and a tuple of B for which the value of common attributes is the same
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$	

Natural join: properties

$$
R=A \bowtie B
$$

Σ
Natural join is commutative and associative

Natural join: example

D Find information about the courses and the professors that hold them

Natural join: example

\triangle Find information about the courses and the professors that hold them R

$$
R=\text { Courses } \bowtie \text { Professors }
$$

Courses Professors

Courses. CCode	Courses. CName	Courses. Semester	ProfID	Professors. PName	Professors. Department
M2170	Computer science	1	D102	Green	Computer engineering
M4880	Digital systems	2	D104	White	Department of electronics
F1401	Electronics	1	D104	White	Department of electronics
F0410	Databases	2	D102	Green	Computer engineering51

Natural join: example

Σ Find information about the courses and the professors that hold them

$$
R=\text { Courses } \bowtie \text { Professors }
$$

Courses Professors

R	Courses. CCode	Courses. CName	Courses. Semester	Profid	Professors. PName	Professors. Department
	M2170	Computer science	1	D102	Green	computer engineering
	M4880	Digital systems	2	D104	White	Department of electronics
	F1401	Electronics	1	D104	White	Department of electronics
B^{6}	F0410	Databases	2	D102	Green	Computer engineering52

Natural join: example

\triangle Find information about the courses and the professors that hold them R

$$
R=\text { Courses } \bowtie \text { Professors }
$$

| Courses.
 CCode | Courses.
 CName | Courses.
 Semester | ProfID | | Professors.
 PName |
:---	:---	:---	:---	:---	:---		Professors.	
Department	$	$	M2170	Computer science	1	D102	Green	Computer engineering
:---	:---	:---	:---	:---	:---			
M4880	Digital systems	2	D104	White	Department of electronics			
F1401	Electronics	1	D104	White	Department of electronics			
F0410	Databases	2	D102	Green	Computer engineering			

$\Sigma N B$: The common attribute ProfID (Professor Identifier) is present only once in the schema of the resulting relation R

Theta-join

Σ The theta-join of two relations A and B generates all the pairs formed by a tuple of A and B that satisfy a generic "join/link condition"

Theta-join: esxample

Σ Find the identifiers of the professors that hold at least two courses

	Theta-join: example			
Courses C1	CCode	CName	Semester	Profid
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Courses C2	CCode	CName	Semester	Profid
	M2170	Computer science	1	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}_{\mathrm{G}}}$				57

Find the identifiers of the
professors that hold at
least two courses

					$Q \mathrm{C}^{-1}$		
Courses C1. CCode	Courses C1. CName	Courses C1. Semester	Courses C1. ProfID	Courses C2. CCode	Courses C2. CName	Courses C2. Semester	Courses C2. Profid
M2170	Computer science	1	D102	M2170	Computer science	1	D102
M2170	Computer science	1	D102	M4880	Digital systems	2	D104
M2170	Computer science	1	D102	F1401	Electronins	1	D104
M2170	Computer science	1	D102	F0410	Databases	2	D102
M4880	Digital systems	2	D104	M2170	Computer science	1	D102
M4880	Digital systems	2	D104	M4880	Digital systems	2	D104
M4880	Digital systems	2	D104	F1401	Electronics	1	D104
M4880	Digital systems	2	D104	F0410	Databases	2	D102
- \cdots	\cdots

Theta-join: definition

$$
R=A \bowtie_{p} B
$$

Σ The theta-join of two relations A and B generates a relation R

- whose schema is the union of the schemes of A and B
- containing all the pairs made up of a tuple of A and a tuple of B for which the predicate p is true
\square The predicate p is in the form $\mathrm{X} \theta \mathrm{Y}$
- X is an attribute of A, Y is an attribute of B
- θ is a comparison operator compatible with the domains of X and of Y
The theta-join is commutative and associative $\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

$$
R=A \bowtie_{p} B
$$

Equi-join

- Particular case of theta-join in which θ is the operator of equivalence (=)

Semi-join

\triangle The semi-join of two relations A and B selects all the tuples of A that are "semantically linked" to at least a tuple of B

- the information of B does not appear in the result

Semi-join: example

\square Find information relative to professors that hold at least one course

Semi-join: example

Courses

CCode	CName	Semester	ProfID
M2170	Computer science	1	D102
M4880	Digital systems	2	D104
F1401	Electronics	1	D104
F0410	Databases	2	D102

Professors

ProfID	PName	Department
D102	Green	Computer engineering
D105	Black	Computer engineering
D104	White	Department of electronics

Semi-join: definition

$$
R=A \ltimes_{p} B
$$

\triangle The semi-join of two relations A and B generates a relation R

- which has the same schema as A
- containing all the tuples of A for which the predicate specified by p is true
Σ The predicate p is expressed in the same form as the theta-join (comparison between the attributes of A and of B)

Semi-join: properties

\square The semi-join can be expressed as a function of the theta-join

- $\mathrm{A} \ltimes_{\mathrm{p}} \mathrm{B}=\pi_{\text {schema }(\mathrm{A})}\left(\mathrm{A} \bowtie_{\mathrm{p}} \mathrm{B}\right)$
Σ The semi-join does not satisfy the commutative property

Σ Version of join that allows us to conserve the information relative to tuples that are not semantically linked by the join predicate
- complete the tuples that lack a counterpart with null values
Σ There are three kinds of outer-join
- left: only the tuples of the first operand are completed
- right: only the tuples of the second operand are completed
- full: the tuples of both operands are completed
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}}$

Left outer-join

The left outer-join of two relations A and B generates the pairs made up of

- a tuple of A and one of B that are "semantically linked"
$+$
- a tuple of A "not semantically linked" to a tuple of B completed with null values for all the attributes of B

Left outer-join: example

Σ Find information about professors and about the courses that they hold

Left outer-join: example				
Courses	CCode	CName	Semester	Profid
	M2170	Computer science	e	D102
	M4880	Digital systems	2	D104
	F1401	Electronics	1	D104
	F0410	Databases	2	D102
Professors				
	Profid	PName	Department	
	D102	Green	Computer engineering	
	D105	Black	Computer engineering	
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}^{\text {a }}$	D104	White	Department of	electronics
				75

Left outer-join: example						
R						
		Professors. Department	Caurses corde	Courses. Clame	${ }_{\text {Courses }}^{\text {Seneser }}$	$\substack{\text { Curses } \\ \text { Profid }}$
0.02	Green	${ }_{\text {comper }}^{\text {comper }}$	${ }^{2270}$	computer	1	${ }^{0.02}$
0102	Green	Computer	${ }^{\text {Fo4tio }}$	Databses	2	0.102
0109	Whrie		M8880	Dital	2	0.104
0.104	White	Deoathert of	${ }^{1490}$	Electronis	1	0.104
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$						

Left outer-join: example						
R						
	Premems		$\substack{\text { cunses } \\ \text { cuase }}$	Curses	come	
0.102	${ }^{\text {Genen }}$	comper	N270	Comer		${ }^{0102}$
002	geen	comuer	F410	Oombases	2	0102
0.07	Whe	lotesamen	Msso	Otit	2	${ }_{0} 104$
0.104	mate	Oexament	${ }^{\text {Fi401 }}$	Eextonis	1	204
0,05	soax	cimper	num	nu	nut	num
$\mathrm{D}_{\mathrm{NG}}^{\mathrm{B}}$						"

Left outer-join: definition

$$
R=A D \bowtie_{p} B
$$

\triangle The left outer-join of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing the pairs made up of
- a tuple of A and a tuple of B for which the predicate p is true
- a tuple of A that is not correlated by means of the predicate p to tuples of B completed with null values for all of the attributes of B
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}_{\mathrm{G}}^{-}}$The left outer-join is not commutative

Left outer-join: example

\triangle Find information about professors and about the courses that they hold

> p: Professors.ProfID=Courses.ProfID
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Left outer-join: example

Σ Find information about professors and about the courses that they hold
R

Professors. ProfiD	Professors. PName	Professors. Department	Courses. CCode	Courses. CName	Courses. Semester	Courses. ProfID
D102	Green	Computer engineering	M2170	Computer science	1	D102
D102	Green	Computer engineering	F0410	Databases	2	D102
D104	White	Department of electronics	M4880	Digital systems	2	D104
D104	White	Department of electronics	F1401	Electronics	1	D104
D105	Black	Computer engineering	null	null	null	null

$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Right outer-join: definition

$$
R=A \bowtie L_{p} B
$$

\triangle The right outer-join of two relations A and B generates a relation R

- whose schema is the union of the schemas of A and B
- containing the pairs made up of
- a tuple of A and a tuple of B for which the predicate p is true
- a tuple of B that is not correlated by means of the predicate p to tuples of A completed with null values for all of the attributes of A
$\mathrm{D}_{\mathrm{B}}^{-}$Il right outer-join is not commutative

Full outer-join: definition

$$
R=A D C_{p} B
$$

\triangle The full outer-join of two relations A and B generates the relation R

- containing the pairs formed by
- a tuple of A and a tuple of B for which predicate p is true
- a tuple of A that is not correlated by means of the predicate p to tuples of B completed with null values for all of the attributes of B
- a tuple of B that is not correlated by means of the predicate p to tuples of A completed with null values for all of the attributes of A

Full outer-join: properties		
	$=A D ভ_{p} B$ commutative	

| | |
| :--- | :--- | :--- |
| DegreeCourseProf | |
| ProfiD PName Department
 D102 Green Computer engineering
 D105 Black Computer engineering
 D104 White Department of electronics
 MasterCourseProf
 ProfiD PName Department
 D102 Green Computer engineering
 D101 Rossi Department of electrics | |

Σ Find information relative to the professors of degree courses or master's degrees

Union: definition

$$
R=A \cup B
$$

Σ The union of two relations A and B generates the relation R

- which has the same schema of A and B
- containing all the tuples belonging to A and all the tuples belonging to B (or to both)
Σ Compatibility
- the relations A and B have to have the same schema (number and kind of attributes)
\triangle Duplicated tuples are deleted
D_{G} The union is commutative and associative

Union: example

Σ Find information relative to the professors of degree courses or master's degrees

R	ProfiD	PName	Department
	D102	Green	Computer engineering
	D105	Black	Computer engineering
D104	White	Department of electronics	
D101	Red	Department of electrics	

Intersection

\triangle The intersection of two relations A and B selects all the tuples present in both relations

$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Intersection: example

Σ Find information relative to professors teaching both degree courses and master's

Intersection: definition

$$
R=A \cap B
$$

\triangle The intersection of two relations A and B generates a relation R

- with the same schema of A and B
- containing all the tuples belonging to both A and B
Σ Compatibility
- relations A and B must have the same schema (number and type of attributes)
\sum Intersection is commutative and associative

Difference

\square The difference of two relations A and B selects all the tuples present exclusively in A

A-B
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Difference: definition

```
\[
R=A-B
\]
\(\Sigma\) The difference of two relations \(A\) and \(B\) generates a relation R
- with the same schema of \(A\) and \(B\)
- containing all tuples belonging to A that do not belong to B
2 Compatibility
- relations \(A\) and \(B\) must have the same schema (number and type of attributes)
\(\square\) The difference does not satisfy the commutative property, nor the associative property
\(\mathrm{D}_{\mathrm{M}}^{\mathrm{B}}\)


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|r|}{Difference: example (n. 3)} \\
\hline \multirow[t]{5}{*}{Courses} & CCode & CName & Semester & Profid \\
\hline & M2170 & Computer science & eremer & D102 \\
\hline & M4880 & Digital systems & 2 & D104 \\
\hline & F1401 & Electronics & 1 & D104 \\
\hline & F0410 & Databases & 2 & D102 \\
\hline \multicolumn{5}{|l|}{Professors} \\
\hline & Profid & PName & \multicolumn{2}{|l|}{Department} \\
\hline & D102 & Green & \multicolumn{2}{|l|}{Computer engineering} \\
\hline & D105 & Black & \multicolumn{2}{|l|}{Computer engineering} \\
\hline & D104 & White & Department of & lectronics \\
\hline \(\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}^{\text {a }}\) & & & & 107 \\
\hline
\end{tabular}

Difference: example (n. 3)
\(\Sigma\) Find identifier, name and department of professors that are not holding any courses

\[
\mathrm{R}=\text { Professors } \bowtie\left(\left(\pi_{\text {Profid }} \text { Professors }\right)-\left(\pi_{\text {Profid }} \text { Courses }\right)\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Difference: example (n, 3)} \\
\hline \multicolumn{5}{|c|}{Professors} \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Professor Identifiers -}} & Profid & PName & Dipartimento \\
\hline & & D102 & Green & Computer engineering \\
\hline & & \(\rightarrow\) D105 & Black & Computer engineering \\
\hline & & D104 & White & Department of electronics \\
\hline \multicolumn{5}{|l|}{Courses} \\
\hline CCode & CName & Semester & Profid & \\
\hline M2170 & Compuer science & 1 & D102 & \\
\hline M4880 & Digital systems & 2 & D104 & \\
\hline F1401 & Electronics & 1 & D104 & \(v\) \\
\hline F0410 & Databases & 2 & D102 & \\
\hline \[
\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}
\] & & Ident ho & ifiers of \(p\) Ids at lea & \begin{tabular}{l}
rofessors that st a course \\
109
\end{tabular} \\
\hline
\end{tabular}



\section*{Anti-join}
\(\square\) The anti-join of two relations \(A\) and \(B\) selects all the tuples of A that are "not semantically linked" to tuples of \(B\)
- the information of \(B\) does not appear in the result

\section*{Anti-join: example}
\(\Sigma\) Find identifier, name and department of professors that are not holding any courses


\section*{Anti-join: definition}
\[
R=A \bar{\ltimes}_{p} B
\]
\(\Sigma\) The anti-join of two relations \(A\) and \(B\) generates a relation \(R\)
- with the same schema of \(A\)
- containing all the tuples of A for which there is no tuple of B for which the predicate \(p\) is true
\(D\) The predicate \(p\) is expressed in the same way as for the theta-join and the semi-join
\(\Sigma\) The anti-join does not satisfy the commutative property, nor the associative property
\(\mathrm{D}_{\mathrm{M}}^{\mathrm{B}}\)



\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline & & \multicolumn{3}{|l|}{Division: example (n, 3)} \\
\hline \multicolumn{2}{|l|}{PassedExams} & \multicolumn{3}{|l|}{FirstYearCourse} \\
\hline StudentID & CCourse & CCourse & & \\
\hline S1 & C1 & C1 & & \\
\hline S1 & C2 & C2 & & \\
\hline S1 & C3 & C3 & & \\
\hline S1 & C4 & C4 & & \\
\hline S1 & C5 & C5 & & \\
\hline S1 & C6 & C6 & & \\
\hline S2 & C1 & & & \\
\hline S2 & C2 & & StudentID & \\
\hline S3 & C2 & & S1 & \\
\hline S4 & C2 & & \multicolumn{2}{|r|}{\multirow[b]{3}{*}{121}} \\
\hline \(\mathrm{Br}^{54}\) & C4 & & & \\
\hline D \({ }^{\text {S4 }}\) & C5 & & & \\
\hline
\end{tabular}

\section*{Division: definition}
\[
R=A / B
\]
\(\triangle\) The division of relation \(A\) by relation \(B\) generates a relation \(R\)
- whose schema is schema( \(A\) ) - schema(B)
- containing all the tuples of \(A\) such that for each tuple ( \(\mathrm{Y}: \mathrm{y}\) ) present in \(B\) there is a tuple ( \(\mathrm{X}: \mathrm{x}, \mathrm{Y}: \mathrm{y}\) ) in A
\(\Sigma\) Division does not satisfy the commutative property, nor the associative property

\section*{Division: example}
\(\square\) Find all the students that have passed the exams of all courses of the first year

R = PassedExams / FirstYearCourses

\section*{Other operators}
\(\Sigma\) Various other operators have been proposed so as to extend the expressive power of relational algebra
- extension with a new attribute, defined by a scalar expression
- GROSS_WEIGHT=NET_WEIGHT+TARE
- aggregate function calculation
- max, min, avg, count, sum
- possibly with the definition of subsets in which to group the data (GROUP BY of SQL)```

