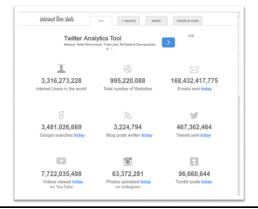

Big data: architectures and data analytics

Introduction to Big Data Based on the slides of Elena Baralis "Big Data: Hype or Hallelujah?" http://dbdmg.polito.it/wordpress/wp-content/uploads/2010/12/BigData_2015_2x.pdf



Data on the Internet...

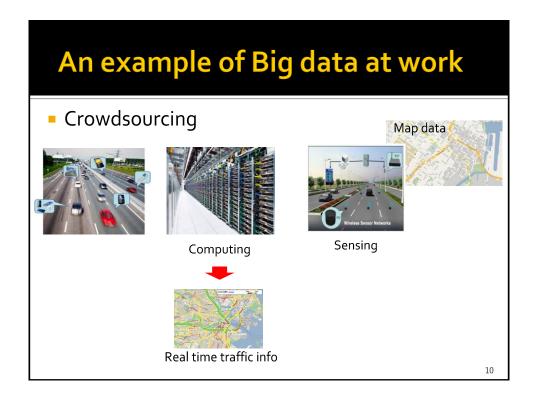
- Internet live stats
 - http://www.internetlivestats.com/

7

Who generates big data?

- User Generated Content (Web & Mobile)
 - E.g., Facebook, Instagram, Yelp, TripAdvisor,
 Twitter, YouTube
- Health and scientific computing

Who generates big data?


- Log files
 - Web server log files, machine system log files

- Internet Of Things (IoT)
 - Sensor networks, RFID, smart meters

What is big data?

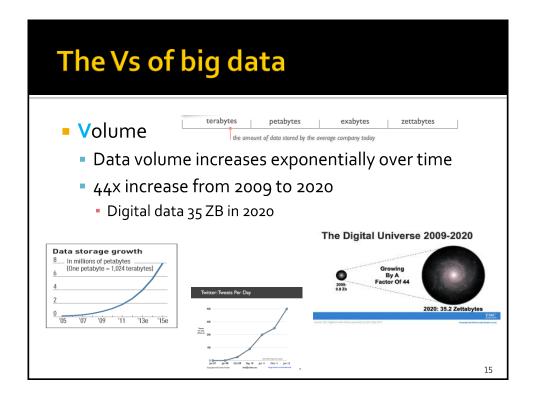
- Many different definitions
 - "Data whose scale, diversity and complexity require new architectures, techniques, algorithms and analytics to manage it and extract value and hidden knowledge from it"

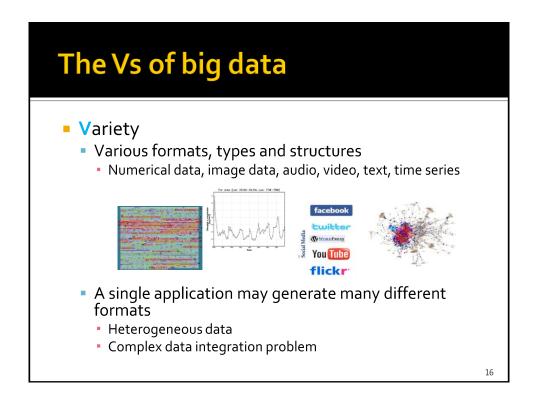
11

What is big data?

- Many different definitions
 - "Data whose scale, diversity and complexity require new architectures, techniques, algorithms and analytics to manage it and extract value and hidden knowledge from it"

What is big data?




- Many different definitions
 - "Data whose scale, diversity and complexity require new architectures, techniques, algorithms and analytics to manage it and extract value and hidden knowledge from it"

13

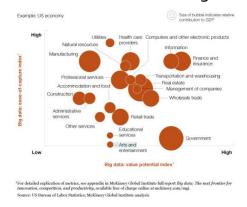
The Vs of big data

- The 3Vs of big data
 - Volume: scale of data
 - Variety: different forms of data
 - Velocity: analysis of streaming data
- ... but also
 - Veracity: uncertainty of data
 - Value: exploit information provided by data

The Vs of big data

- Velocity
 - Fast data generation rate
 - Streaming data
 - Very fast data processing to ensure timeliness

17


The Vs of big data

- Veracity
 - Data quality

The Vs of big data

- Value
 - Translate data into business advantage

19

Big data value chain

Generation

Acquisition

Storage

Analysis

- Generation
 - Passive recording
 - Typically structured data
 - Bank trading transactions, shopping records, government sector archives
 - Active generation
 - Semistructured or unstructured data
 - User-generated content, e.g., social networks
 - Automatic production
 - Location-aware, context-dependent, highly mobile data
 - Sensor-based Internet-enabled devices

Big data value chain

Generation

Acquisition

Storage

Analysis

- Acquisition
 - Collection
 - Pull-based, e.g., web crawler
 - Push-based, e.g., video surveillance, click stream
 - Transmission
 - Transfer to data center over high capacity links
 - Preprocessing
 - Integration, cleaning, redundancy elimination

21

Big data value chain

Generation

Acquisition

Storage

Analysis

- Storage
 - Storage infrastructure
 - Storage technology, e.g., HDD, SSD
 - Networking architecture, e.g., DAS, NAS, SAN
 - Data management
 - File systems (HDFS), key-value stores (Memcached), column-oriented databases (Cassandra), document databases (MongoDB)
 - Programming models
 - Map reduce, stream processing, graph processing

Big data value chain

Generation

Acquisition

Storage

Analysis

- Analysis
 - Objectives
 - Descriptive analytics, predictive analytics, prescriptive analytics
 - Methods
 - Statistical analysis, data mining, text mining, network and graph data mining
 - Clustering, classification and regression, association analysis
 - Diverse domains call for customized techniques

23

Big data challenges

- Technology and infrastructure
 - New architectures, programming paradigms and techniques are needed
- Data management and analysis
 - New emphasis on "data"
 - Data science

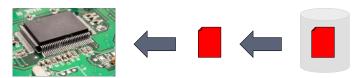
Large scale data processing

- Traditional approach
 - Database and data warehousing systems
 - Well-defined structure
 - Small enough data
- Big data
 - Data sets not suitable for databases
 - E.g., Internet data crawled by Google, Yahoo!, Facebook, ...
 - May need near real-time (streaming) analysis
 - Different from data warehousing
 - Different programming paradigm

25

Large scale data processing

- Traditional computation is processor bound
 - Small dataset
 - Complex processing
- How to increase performance?
 - New and faster processor
 - More RAM


Large scale data processing

- Traditional data storage
 - On large SANs
 - Data transferred to processing nodes on demand at computing time
- Traditional distributed computing
 - Multiple machines, single job
 - Complex systems
 - E.g., MPI
 - Programmers need to manage data transfer synchronization, system failure, dependencies

27

The bottleneck

- Processors process data
- Hard drives store data
- We need to transfer data from the disk to the processor

The bottleneck

- Hard drives evolution
 - Storage capacity increased fast in recent decades
 - E.g., from 1GB to 1TB
 - The transfer rate increased less
 - E.g., from 5MB/s to 100MB/s
- Transfer of disk content in memory
 - Few years ago: 3.33 min.
 - Now: 2.7 hours (if you have enough RAM)
- Problem: data transfer from disk to processors

29

The solution

- Transfer the processing power to the data
- Multiple distributed disks
 - Each one holding a portion of a large dataset
- Process in parallel different file portions from different disks

Issues

- Need to manage
 - Process synchronization
 - Hardware failures
 - Data loss
 - Joining data from different disks
 - Scalability
- Managed by new distributed architectures
 - E.g., Hadoop

31

Apache Hadoop

- Open source project by the Apache Foundation
- Based on 2 Google papers
 - Google File System (GFS), published in 2003
 - Map Reduce, published in 2004
- Reliable storage and processing system based on YARN (Yet Another Resource Negotiator)
 - Storage provided by HDFS
 - Different processing models
 - E.g., Map Reduce, Spark, Spark streaming, Hive, Giraph

Hadoop scalable approach

- Data distibuted across nodes automatically
 - When loaded into the system
- Processing executed on local data
 - Whenever possible
- No need of data transfer to start the computation
- Data automatically replicated
 - For availability and reliability
- Developers only focus on the logic of the problem to solve

33

Conclusions - Certainly not just hype Big Data Investments by Industry Has your organization already Invested in technology specifically designed to address the big data challenge? - In but not a panacea! - Certainly not just hype Big Data Investments by Industry And Data Investments by Industry - In but not a panacea! - Certainly not just hype Big Data Investments by Industry - In but not a panacea! - Certainly not just hype Big Data Investments by Industry - In but not a panacea! - Certainly not just hype Big Data Investments by Industry - In but not a panacea! - Certainly not just hype Big Data Investments by Industry - In but not a panacea!