Big data: architectures and
data analytics

MapReduce and Hadoop

Designers/Developers focus on the definition of
the Map and Reduce functions (i.e., mandr)
No need to manage the distributed execution of the
map, shuffle and sort, and reduce phases
The Hadoop framework coordinates the
execution of the MapReduce program
Parallel execution of the map and reduce phases
Execution of the shuffle and sort phase
Scheduling of the subtasks
Synchronization

07/03/2016

Hadoop implementation of
MapReduce

..

MapReduce programs

The programming language is Java
A Hadoop MapReduce program consists of
three main parts

Driver

Mapper

Reducer
Each partis “implemented” by means of a
specific class

Terminology

Driver class
The class containing the method/code that coordinates the
configuration of the job and the “workflow” of the application
Mapper class
A class “implementing” the map function
Reducer class
A class “implementing” the reduce function

Driver

Instance of the Driver class (i.e., an object)
Mapper

Instance of the Mapper class (i.e., an object)
Reducer

Instance of the Reducer class (i.e., an object)

Terminology

(Hadoop) Job
Execution/run of a MapReduce code over a data set
Task
Execution/run of a Mapper (Map task) or a Reducer
(Reduce task) on a slice of data
Many tasks for each job
Input split
Fixed-size piece of the input data

Usually each split as approximately the same size of a HDFS
block/chuck

Driver

The Driver

Is characterized by the main() method, which
accepts arguments from the command line

i.e., itis the entry point of the application
Configures the job
Submits the job to the Hadoop Cluster
“Coordinates” the work flow of the application
Runs on the client machine

i.e., it does not run on the cluster

07/03/2016

Mapper

The Mapper
Is an instance of the Mapper class
“Implements” the map phase

Is characterized by the map(...) method
Processes the (key, value) pairs of the input file and
emits (key, value) pairs

Runs on the cluster

Reducer

The Reducer
Is an instance of the Reduce class
“Implements” the reduce phase
Is characterized by the reduce(...) method
Processes (key, [list of values]) pairs and emits (key,
value) pairs
Runs on the cluster

Hadoop implementation of the

MapReduce phases

Input key-value pairs are read from the HDFS file
system
The map method of the Mapper
Is invoked over each input key-value pair
Emits a set of intermediate key-value pairs that are
stored in the local file system of the computing server
(they are not stored in HDFS)
Intermediate results
Are aggregated by means of a shuffle and sort
procedure
A set of <key, [list of values]> pairs are generated

Hadoop implementation of the

MapReduce phases

The reduce method of the Reduder
Is applied over each intermediate <key, [list of
values]> pair
Emits a set of key-value pairs that are stored in
HDFS (the final result of the MapReduce
application)

Intermediate key-value pairs are transient:
They are not stored on the distributed files system
They are stored locally to the node producing or
processing them

Hadoop implementation of the

MapReduce phases

In order to parallelize the work/the job,
Hadoop executes a set of tasks in parallel
It instances one Mapper (Task) for each input split
And a user-specified number of Reducers

Each reducer is associated with a set of keys
It receives and processes all the key-value pairs associated with
its set of keys
Mappers and Reducers are executed on the

nodes/servers of the clusters

07/03/2016

MapReduce data flow with a single MapReduce data flow with a single

reducer reducer

d
= ET OO
Output read, Output
= B = B
= ETa TN

MapReduce data flow with a single MapReduce data flow with a single

reducer reducer

—_read write [Output Output
— Gedeed | Fieo Gedveed | Fieo

read it -
Split 2 mapper wre = i send data
on the

network

MapReduce data flow with a single MapReduce data flow with a single

reducer reducer

Output Output
File o File o

send data
onthe
network

send data
onthe
network

MapReduce data flow with a single

07/03/2016

MapReduce data flow with multiple

reducer

Temporary files

(local file system)
Input Data s Y

(HDFS file) SN

send data
on the
network

Output Data
v (HDFS file)

MapReduce data flow with multiple

reducers

send data
on the
network

MapReduce data flow with multiple

reducers

Each key is assigned
to/managed by one reducer

send data
on the
network

MapReduce programs - Driver

The Driver class extends the
org.apache.hadoop.conf.Configured class
and implements the
org.apache.hadoop.util.Tool interface
You can write a Driver class that does not extend
Configured and does not implement Tool

However, you need to manage some low level details
related to some command line parameters in that case

The designer/developerimplements the
(...)and (...) methods

reducers

Each key is assigned Potentially, all mappers send
to/managed by one reducer data (a set of (key,value) pairs)
\ to all reducers

send data
onthe
network

MapReduce programs - Driver

The (...) method

Configures the job
Name of the Job
Job Input format
Job Output format

Mapper class
Name of the class
Type of its input (key, value) pairs
Type of its output (key, value) pairs

MapReduce programs - Driver

07/03/2016

MapReduce programs - Mapper

Reducer class
Name of the class
Type of its input (key, value) pairs
Type of its output (key, value) pairs
Number of reducers

MapReduce programs - Mapper

The Mapper class extends the
org.apache.hadoop.mapreduce.Mapper class
The org.apache.hadoop.mapreduce.Mapper class
Is a generic type/generic class

With four type parameters: input key type, input value
type, output key type, output value type

The designer/developerimplements the
map(...) method

That is automatically called by the framework for
each (key, value) pair of the input file

MapReduce programs - Reducer

The map(...) method
Processes its input (key, value) pairs by using
standard Java code
Emits (key, value) pairs by using the
context.write(key, value) method

MapReduce programs - Reducer

The Reducer class extends the
org.apache.hadoop.mapreduce.Reducer class
The org.apache.hadoop.mapreduce.Reducer class
Is a generic type/generic class

With four type parameters: input key type, input value type,
output key type, output value type

The designer/developerimplements the
reduce(...) method
That is automatically called by the framework for
each (key, [list of values]) pair obtained by
aggregating the output of the mapper(s)

MapReduce Data Types

The reduce(...) method
Processes its input (key, [list of values]) pairs by
using standard Java code
Emits (key, value) pairs by using the
context.write(key, value) method

Hadoop has its own basic data types
Optimized for network serialization
org.apache.hadoop.io.Text: like Java String

org.apache.hadoop.io.IntWritable: like Java
Integer

org.apache.hadoop.io.LongWritable: like Java
Long

org.apache.hadoop.io.FloatWritable : like Java
Float

Etc

MapReduce Data Types

The basic Hadoop data types implement the
org.apache.hadoop.io.Writable and
_org.?g)ache.hadoop.io.WritabIeComparable
interfaces
All classes (data types) used to represent keys
are instances of WritableComparable
Keys must be “comparable” for supporting the sort
and shuffle phase
All classes (data types) used to represent values
are instances of Writable
Usually, they are also instances of
WritableComparable even if it is not indispensable

InputFormat

The input of the MapReduce programis a
HDFS file

While the input of the a Mapper is a set of
(key, value) pairs

The classes extending the
org.apache.hadoop.mapreduce.lnputFormat
abstract class are used to read the input data
and “logically transform” the input HDFS file
in a set of (key, value) pairs

MapReduce Data Types

Developers can define new data types by
implementing the
org.apache.hadoop.io.Writable and/or

org.apache.hadoop.io.WritableComparable

interfaces

It is useful for managing complex data types

07/03/2016

Getting Data to the Mapper

InputFormat

InputFormat “describes” the input-format
specification for a MapReduce application and
processes the input file(s)
The InputFormat class is used to

Read input data and validate the compliance of the

input file with the expected input-format

Split the input file(s) into logical Input Splits

Each input split is then assigned to an individual Mapper

Provide the RecordReader implementation to be used

to divide the logical input split in a set of (key,value)
pairs (also called records) for the mapper

Getting Data to the Mapper

‘ Input (HDFS) file ‘

N N

Input Split

Input Split| |Input Split

Input Split

Input

(teratoy (feratop iterata} (iteratof
Format - =

Racord Racord Racord Racord

Reader Reader Faadar Reader

wwpr | | wover | | waopar ‘ s ‘

‘ Input (HDFS) file ‘

VRN

Input Split

Input Splat| |Input Split| |Imput Split

Input

fteratop teratop fterato} (teratoy
Format - Z Z

Record
Reader

Racord Record Racord
Reader Reacer Reader

IS 1] 1
\ [4

N
N Mappel Mapper |, Mapper
N \ 1 /)

Mapper

< T
7
N L

N
Sets of (key, value)
pairs

Reading Data

InputFormat identifies partitions of the data
that form an input split
Each input split is a (reference to a) part of the
input file processed by a single mapper
Each split is divided into records, and the mapper
processes one record (i.e., a (key,value) pair) at a
time

TextlnputFormat

07/03/2016

InputFormat

A set of predefined classes extending the
InputFormat abstract class are available for
standard input file formats
TextInputFormat
An InputFormat for plain text files
KeyValueTextInputFormat
Another InputFormat for plain text files
SequenceFilelnputFormat
An InputFormat for sequential/binary files

TextinputFormat example

TextInputFormat
An InputFormat for plain text files

Files are broken into lines
Either linefeed or carriage-return are used to signal end
of line
One pair (key, value) is emitted for each line of the
file
Key is the position (offset) of the line in the file
Value is the content of the line

KeyValueTextIinputFormat

Input HDFS file

Toy example file for Hadoop.\n
Hadoop running example.
TextinputFormat is used to split data.

ey, value) pairs generated by using TextInputFormat
(0, “Toy example file for Hadoop.”)
(31, “Hadoop running example.”)
(56, “TextinputFormat is used to split data.”)

KeyValueTextinputFormat

KeyValueTextInputFormat

An InputFormat for plain text files

Each line of the file must have the format
key<separator>value

The default separator is tab (\t)

Files are brokeninto lines
Fither linefeed or carriage-return are used to signal end of
ine
Each lineis split into key and value parts by considering the
separator symbol/character

One pair (key, value) is emitted for each line of the file
Key is the text preceding the separator
Value is the text following the separator

Input HDFS file

10125\tMister John
10236\tMiss Jenny
1\tMister Donald Duck

value) generated by using KeyValueTextInputFormat
(10125, “Mister John")
(10236, “Miss Jenny")
(1, “Mister Donald Duck”)

OutputFormat

The classes extending the
org.apache.hadoop.mapreduce.OutputForm
at abstract class are used to write the output
of the MapReduce program in a HDFS file(s)

TextOutputFormat

TextOutputFormat
An OutputFormat for plain text files

For each output (key, value) pair
TextOutputFormat writes one line in the output
file
The format of each output line is

key\tvalue\n

07/03/2016

OutputFormat

A set of predefined classes extending the
OutputFormat abstract class are available for
standard output file formats
TextOutputFormat
An OutputFormat for plain text files
SequenceFileOutputFormat
An OutputFormat for sequential/binary files

Basic structure of a MapReduce

program - Driver (1)

/* Set package */
package it.polito.bigdata.hadoop.mypackage;

/* Import libraries */
import java.io.|OException;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util. ToolRunner;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

Import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

Structure of a MapReduce
program in Hadoop

..

Basic structure of a MapReduce

program - Driver (2)

/* Driver class */
public class MapReduceAppDriver extends Configured implements
Tool §
@Override
publicint run(String[] args) throws Exception {
/* variables */
int exitCode;

/I Parse parameters

numberOfReducers = Integer.parselnt(args[o]);
inputPath = new Path(args[1]);

outputDir = new Path(args[2]);

Basic structure of a MapReduce

program - Driver (3)

07/03/2016

Basic structure of a MapReduce
program - Driver (4)

/I Define and configure a new job
Configuration conf = this.getConf();
Job job = Job.getInstance(conf);

|/ Assign a name to the job
job.setJobName("My First MapReduce program");

Basic structure of a MapReduce

program - Driver (5)

/1 Set path of the input file/folder (if it is a folder, the job reads all
the files in the specified folder) for this job
FilelnputFormat.addInputPath(job, inputPath);

/I Set path of the output folder for this job
FileOutputFormat.setOutputPath(job, outputDir);

|/ Set input format
/| TextinputFormat = textual files
job.setInputFormatClass(Text/nputFormat.class);

/ Set job output format
job.setOutputFormatClass(TextOutputFormat.class);

Basic structure of a MapReduce
program - Driver (6)

/I Specify the class of the Driver for this job
job.setJarByClass(MapReduceAppDriver .class);

/| Set mapper class
job.setMapperClass(MyMapperClass.class);

/| Set map output key and value classes
job.setMapOutputKeyClass(output key type.class);
job.setMapOutputValueClass(output value type.class);

Basic structure of a MapReduce

/I Set reduce class
job.setReducerClass(MyReducerClass.class);

/ Set reduce output key and value classes
job.setOutputKeyClass(output key type.class);
job.setOutputValueClass(output value type.class);

/I Set number of reducers
job.setNumReduceTasks(numberOfReducers);

Basic structure of a MapReduce

program - Driver (7)

/| Execute the job and wait for completion
if (job.waitForCompletion(true)==true)
exitCode=0;
else
exitCode=1;
return exitCode;
} // End of the run method

program - Driver (8)

/* main method of the driver class */
public static void main(String args[]) throws Exception §
/* Exploit the ToolRunner class to "configure" and run the
Hadoop application */

int res = ToolRunner.run(new Configuration(),
new MapReduceAppDriver(), args);

System.exit(res);
}// End of the main method

}// End of public class MapReduceAppDriver

Basic structure of a MapReduce

program - Mapper (1)

/* Set package */
package it.polito.bigdata.hadoop.mypackage;

/* Import libraries */
import java.io.|OException;

import org.apache.hadoop.mapreduce.Mapper;
Import org.apache.hadoop.io.*;

Basic structure of a MapReduce

program - Mapper (3)

/* Implementation of the map method */

protected void map(
MapperinputKeyType key, /[Input key
MapperinputValueType value, /[Inputvalue
Context context) throws IOException, InterruptedException {

/* Process the input (key, value) pair and
emit a set of (key,value) pairs.
context.write(..) is used to emit (key, value) pairs
context.write(new outputkey, new outputvalue); */
}// End of the map method

}// End of class myMapperClass

07/03/2016

Basic structure of a MapReduce
program - Mapper (2)

/* Mapper Class */
class myMapperClass extends Mapper<
MapperinputKeyType, | Input key type (must be
consistent with the InputFormat class specified in the Driver)
MapperinputValueType, [/ Input value type (must be
consistent with the InputFormat class specified in the Driver)
MapperOutputKeyType, || Output key type
MapperOutputValueType> || Output value type

Basic structure of a MapReduce

program - Reducer (2)

/* Reducer Class */
class myReducerClass extends Reducer<
ReducerlnputKeyType, |/ Input key type (must be
consistent with the OutputKeyType of the Mapper)
ReducerlnputValueType, [/ Input value type (must be
consistent with the OutputKeyType of the Mapper)
ReducerOutputKeyType, [/ Output key type (must be
consistent with the OutputFormat class specified in the Driver)
ReducerOutputValueType> | Output value type (must
be consistent with the OutputFormat class specified in the Driver)
{

Basic structure of a MapReduce

program - Reducer (1)

/* Set package */
package it.polito.bigdata.hadoop.mypackage;

/* Import libraries */
import java.io.lOException;

import org.apache.hadoop.mapreduce.Reducer;
Import org.apache.hadoop.io.*;

Basic structure of a MapReduce
program - Reducer (3)

/* Implementation of the reduce method */
protected void reduce(
ReducerlnputKeyType key, [/ Input key
Iterable<ReducerinputValueType> values, /[Input values (list of
values)
Context context) throws IOException, InterruptedException §

* Process the input (key, [list of values]) pair and
emit a set of (key,value) pairs.
context.write(..) is used to emit (key, value) pairs
context.write(new outputkey, new outputvalue); */
}// End of the reduce method

}// End of class myReducerClass

10

