# Relational Algebra Operations and MapReduce

### **Relational Algebra Operators**

- The relational algebra and the SQL language have many useful operators
  - Selection
  - Projection
  - Union, intersection, and difference
  - Join (see Join design patterns)
  - Aggregations and Group by (see the Summarization design patterns)

### **Relational Algebra Operators**

- The MapReduce paradigm can be used to implement relational operators
  - However, the MapReduce implementation is efficient only when a full scan of the input table(s) is needed
    - i.e., when queries are not selective and process all data
  - Selective queries, which return few tuples/records of the input tables, are usually not efficient when implemented by using a MapReduce approach

3

### **Relational Algebra Operators**

- Most preprocessing activities involve relational operators
  - E.g., the ETL processes in the data warehousing application context
  - E.g., the computation of the friends of a user

### Relations/Tables

- Relations/Tables (also the big ones) can be stored in the HDFS distributed file system
  - They are broken in blocks and spread across the servers of the Hadoop cluster

5

#### **Relations/Tables**

- Note
  - In relational algebra, relations/tables do not contain duplicate records by definition
  - This constraint must be satisfied by both the input and the output relations/tables

## Selection

- $\sigma_{c}(R)$ 
  - Apply predicate (condition) C to each record of table R
  - Produce a relation containing only the records that satisfy predicate C
- The selection operator can be implemented by using the filtering pattern

7

#### Selection

Courses

| <u>CCode</u> | CName            | Semester | ProfID |
|--------------|------------------|----------|--------|
| M2170        | Computer science | 1        | D102   |
| M4880        | Digital systems  | 2        | D104   |
| F1401        | Electronics      | 1        | D104   |
| F0410        | Databases        | 2        | D102   |

- Find the courses held in the second semester
- $\sigma_{Semester=2}$  (Courses)

| Selection |              |                     |          |        |  |
|-----------|--------------|---------------------|----------|--------|--|
| Courses   | CCode        | CName               | Semester | ProfID |  |
|           | M2170        | Computer science    | 1        | D102   |  |
|           | M4880        | Sistemi digitali    | 2        | D104   |  |
|           | F1401        | F1401 Electronics 1 |          | D104   |  |
|           | F0410        | Databases           | 2        | D102   |  |
|           |              |                     |          |        |  |
| Result    | <u>CCode</u> | CName               | Semester | ProfID |  |
|           | M4880        | Sistemi digitali    | 2        | D104   |  |
|           | F0410        | Basi di dati        | 2        | D102   |  |
|           |              |                     |          | 9      |  |

# Selection

- Map-only job
- Mappers
  - Analyze one record at a time of its split
    - If the record satisfies C then emit a (key,value) pair with key=record and value=null
    - Otherwise discard the record

LO

### **Projection**

- $-\pi_{S}(R)$ 
  - For each record of table R, keep only the attributes in S
  - Produce a relation with a schema equal to S (i.e., a relation containing only the attributes in S)
  - Remove duplicates, if any

11

### **Projection**

**Professors** 

| <u>ProfId</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D105          | Jones    | Computer engineering |
| D104          | Smith    | Electronics          |

- Find the surnames of all professors
- $\pi_{PSurname}$ (Professors)



### **Projection**

- Mappers
  - Analyze one record at a time of its split
    - For each record r in R, select the values of the attributes in S and construct a new record r'
    - Emit a (key,value) pair with key=r' and value=null
- Reducers
  - Emit one (key, value) pair for each input (key, [list of values]) pair with key=r' and value=null

#### Union

- $-R \cup S$ 
  - R and S have the same schema
  - Produce a relation with the same schema of R and S
  - There is a record t in the output of the union operator for each record t appearing in R or S
  - Duplicated records are removed

15

#### Union

#### DegreeCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D105          | Jones    | Computer engineering |
| D104          | White    | Electronics          |

#### MasterCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D101          | Red      | Electronics          |

- Find information relative to the professors of degree courses or master's degrees
- $\hbox{\color{red} \bullet Degree Course Prof} \cup \hbox{\color{red} Master Course Prof}$

| Union         |               |                      |          |        |              |                      |    |
|---------------|---------------|----------------------|----------|--------|--------------|----------------------|----|
| Degre         | <u>eCours</u> | <u>eProf</u>         | 7        |        |              |                      |    |
| <u>ProfID</u> | PSurna<br>me  | Department           |          |        |              |                      |    |
| D102          | Smith         | Computer engineering |          | Resu   | lt           |                      |    |
| D105          | Jones         | Computer engineering |          | ProfID | PSurna<br>me | Department           |    |
| D104          | White         | Electronics          |          | D102   | Smith        | Computer             |    |
| Macto         | rCourse       | Prof                 |          |        |              | engineering          |    |
| ProfID        | PSurna        | Department           | 1        | D105   | Jones        | Computer engineering |    |
|               | me            |                      | 4        | D104   | White        | Electronics          |    |
| D102          | Smith         | Computer engineering |          | D101   | Red          | Electronics          |    |
| D101          | Red           | Electronics          |          |        |              |                      |    |
|               |               |                      | <u> </u> |        |              |                      | 17 |

#### Union

- Mappers
  - For each input record t in R, emit one (key, value) pair with key=t and value=null
  - For each input record t in S, emit one (key, value) pair with key=t and value=null
- Reducers
  - Emit one (key, value) pair for each input (key, [list of values]) pair with key=t and value=null
    - i.e., one single copy of each input record is emitted

8.

#### Intersection

- $\blacksquare R \cap S$ 
  - R and S have the same schema
  - Produce a relation with the same schema of R and S
  - There is a record t in the output of the intersection operator if and only if t appears in both relations (R and S)

19

#### Intersection

#### DegreeCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D105          | Jones    | Computer engineering |
| D104          | White    | Electronics          |

#### MasterCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D101          | Red      | Electronics          |

- Find information relative to professors teaching both degree courses and master's courses
- DegreeCourseProf 
   ∩ MasterCourseProf

|        | Intersection  DegreeCourseProf |                      |                   |        |              |             |    |
|--------|--------------------------------|----------------------|-------------------|--------|--------------|-------------|----|
| ProfID | PSurna                         | Department           |                   |        |              |             |    |
| 110112 | me                             | Вераганісне          | <u>.</u>          |        |              |             |    |
| D102   | Smith                          | Computer engineering |                   | Resu   | lt           |             |    |
| D105   | Jones                          | Computer engineering | <u> </u>          | ProfID | PSurna<br>me | Department  |    |
| D104   | White                          | Electronics          |                   | D102   | Smith        | Computer    |    |
| Maste  | rCourse                        | eProf                | $\longrightarrow$ |        |              | engineering |    |
| ProfID | PSurna<br>me                   | Department           |                   |        |              |             |    |
| D102   | Smith                          | Computer engineering |                   |        |              |             |    |
| D101   | Red                            | Electronics          | ゴ                 |        |              |             |    |
|        |                                |                      |                   |        |              |             | 21 |

#### Intersection

- Mappers
  - For each input record t in R, emit one (key, value) pair with key=t and value=t
  - For each input record t in S, emit one (key, value) pair with key=t and value=t

#### Intersection

- Reducers
  - Emit one (key, value) pair with key=t and value=null for each input (key, [list of values]) pair with [list of values] containing two values
    - It happens if and only if both R and S contain t

23

#### **Difference**

- R S
  - R and S have the same schema
  - Produce a relation with the same schema of R and S
  - There is a record t in the output of the difference operator if and only if t appears in R but not in S

#### **Difference**

#### DegreeCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D105          | Jones    | Computer engineering |
| D104          | White    | Electronics          |

#### MasterCourseProf

| <u>ProfID</u> | PSurname | Department           |
|---------------|----------|----------------------|
| D102          | Smith    | Computer engineering |
| D101          | Red      | Electronics          |

- Find the professors teaching degree courses but not master's courses
- DegreeCourseProf MasterCourseProf

Electronics

D101

Red

25

26

#### **Difference** DegreeCourseProf **ProfID PSurna** Department me D102 Smith Computer Result engineering D105 Jones Computer <u>ProfID</u> **PSurna** Department engineering me D104 White Electronics D105 Jones Computer engineering MasterCourseProf D104 White Electronics Department **ProfID PSurna** me D102 Smith Computer engineering

#### **Difference**

- Mappers
  - For each input record t in R, emit one (key, value) pair with key=t and value=name of the relation (i.e., R)
  - For each input record t in R, emit one (key, value) pair with key=t and value=name of the relation (i.e., S)
- Two mapper classes are needed
  - One for each relation

27

#### **Difference**

- Reducers
  - Emit one (key, value) pair with key=t and value=null for each input (key, [list of values]) pair with [list of values] containing only the value R
    - It happens if and only if t appears in R but not in S

### **Join**

- The join operators can be implemented by using the Join pattern
  - By using the reduce side or the map side pattern depending on the size of the input relations/tables

29

# **Aggregations and Group by**

 Aggregations and Group by are implemented by using the Summarization pattern