25/04/2016

Big data: architectures and
data analytics

RDD-based programming

Basic Actions

Basic RDD actions

The Spark’s actions can

Return the content of the RDD and “store” itin a

local Java variable of the Driver program

Pay attention to the size of the returned value

Store the content of an RDD in an output file
The basic actions returning (Java) objects to
the Driver are

collect(), count(), countByValue(), take(), top(),

takeSample(), reduce(), fold(), aggregate(),
foreach()

25/04/2016

Syntax

In the following, the following syntax is used

T =Type of the objects of the RDD on which the
transformation is applied

The RDD on which the action is applied in referred
as “input” RDD

Collect action

25/04/2016

Collect action

Goal

The collect action returns a local Java list of
objects containing the same objects of the
considered RDD
Pay attention to the size of the RDD
Large RDD cannot be memorized in a local
variable of the Driver

Method

The collect action is based on the List<T> collect()
method of the JavaRDD<T> class

Collect action: Example 1

Create an RDD of integers containing the
values {1, 2, 3, 3}

Retrieve the values of the created RDD and
store them in a local Java list that is
instantiated in the Driver

25/04/2016

Collect action: Example 1

// Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputList = Arrays.asList(z, 2, 3, 3);

1

JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve the elements of the inputRDD and store them in
/[alocal Java list

List<Integer> retrievedValues = inputRDD.collect();

Collect action: Example 1

|/ Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputList = Arrays.asList(z, 2, 3, 3);

1

JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve the elements of the inputRDD and store them in
/l alocal Java list
List<Integer> retrievedValues = inputRDD.collect();

10

25/04/2016

Collect action: Example 1

// Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputList = Arrays.asList(a, 2, 3, 3);
JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve the elements of the inputRDD and store them in

/[alocal Java list
List<Integer> retrievedValues }: inputRDD.collect();

\

retrievedValues is a local Java variable.

It can only be stored in the main memory of the
process/task associated with the Driver.

Pay attention to the size of the list.

Use the collect() action if and only if you are sure that the
list is small.

Otherwise, store the content of the RDD in afile by
using the saveAsTextFile method

11

Count action

25/04/2016

Count action

Goal

Count the number of elements of an RDD

Method

The count action is based on the
method of the class

Count action: Example 1

Consider the textual files “documenta.txt”
and “document2.txt”
Print the name of the file with more lines

25/04/2016

Count action: Example 1

/| Read the content of the two input textual files
JavaRDD<String> inputRDD1 = sc.textFile("documenta.txt");
JavaRDD<String> inputRDD2 = sc.textFile("document2.txt");

/| Count the number of lines of the two files = number of elements
/| of the two RDDs

long numLinesDoc1 = inputRDD1.count();

long numLinesDoc2 = inputRDD2.count();

if (numLinesDoc1> numLinesDoc2) {
System.out.printIn ("documenta.txt");

else {
if (numLinesDoc2> numLinesDoc1)
System.out.println ("document2.txt");
else
System.out.printin("Same number of lines");

15

CountByValue action

25/04/2016

CountByValue action

Goal

The countByValue action returns a local Java Map
object containing the information about the
number of times each element occurs in the RDD

Method

The countByValue action is based on the

method of the
class

CountByValue action: Example 1

Create an RDD from a textual file containing
the first names of a list of users

Each line contain one name
Compute the number of occurrences of each
name and “store” this information in a local
variable of the Driver

25/04/2016

CountByValue action: Example 1

// Read the content of the input textual file
JavaRDD<String> namesRDD = sc.textFile("names.txt");

/| Compute the number of occurrencies of each name
java.util.Map<String, java.lang.Long> namesOccurrences =
namesRDD.countByValue();

19

CountByValue action: Example 1

// Read the content of the input textual file
JavaRDD<String> namesRDD = sc.textFile("names.txt");

/| Compute the number of occurrencies of each name
‘ java.util.Map<String, java.lang.Long> namesOccurrences‘z
namesRDD.countByValue(); \

Also in this case, pay attention to the size of the
returned map (i.e., the number of names in this case).
Use the countByValue() action if and only if you are sure
that the returned java.util.Map is small.

Otherwise, use an appropriate chain of Spark’s
transformations and write the final result in a file by
using the saveAsTextFile method.

20

25/04/2016

10

Take action

Take action

Goal

The take(n) action returns a local Java list of
objects containing the first n elements of the
considered RDD

The order of the elements in an RDD is consistent with
the order of the elements in the file or collection that
has been used to create the RDD

Method

The take action is based on the List<T> take(int
n) method of the JavaRDD<T> class

22

25/04/2016

11

Take action: Example 1

Create an RDD of integers containing the
values {1, 5, 3, 3, 2}

Retrieve the first two values of the created
RDD and store them in a local Java list that is
instantiated in the Driver

23

Take action: Example 1

|/ Create an RDD of integers. Load the values 1, 5, 3, 3,2 in this RDD
List<Integer> inputList = Arrays.asList(a, 5, 3, 3, 2);

1

JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

I/ Retrieve the first two elements of the inputRDD and store them in
[/ alocal Java list
List<Integer> retrievedValues = inputRDD.take(2);

24

25/04/2016

12

First action

First action

Goal

The first() action returns a local Java object
containing the first element of the considered
RDD

The order of the elements in an RDD is consistent with
the order of the elements in the file or collection that
has been used to create the RDD

Method

The first action is based on the T first() method of
the JavaRDD<T> class

26

25/04/2016

13

25/04/2016

First vs Take(a)

The only difference between first() and
take(1) is given by the fact that
first() returns a single element of type T
The returned element is the first element of the RDD

take(1) returns a list of elements containing one
single element of type T

The only element of the returned list is the first element
of the RDD

27

Top action

14

Top action

Goal

The top(n) action returns a local Java list of
objects containing the top 1 (largest) elements of
the considered RDD

The ordering is the default one of class T (the class of
the objects of the RDD)

The descending order is used

Method
The top action is based on the
method of the class

Top action: Example 1

Create an RDD of integers containing the
values {1, 5, 3, 3, 2}

Retrieve the top-2 greatest values of the
created RDD and store them in a local Java
list that is instantiated in the Driver

25/04/2016

15

Top action: Example 1

// Create an RDD of integers. Load the values 1, 5, 3, 3,2 in this RDD
List<Integer> inputList = Arrays.asList(a, 5, 3, 3, 2);
JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve the top-2 elements of the inputRDD and store them in
/[alocal Java list
List<Integer> retrievedValues = inputRDD.top(2);

31

TakeOrdered action

25/04/2016

16

TakeOrdered action

Goal

The takeOrdered(n, comparator<T>) action

returns a local Java list of objects containing the

top n (smallest) elements of the considered RDD
The ordering is specified by the developer by means of a

class implementing the java.util. Comparator<T>
interface

Method

The takeOrderedaction is based on the List<T>
takeOrdered (int n, java.util.Comparator<T>
comp) method of the JavaRDD<T> class

33

TakeSample action

25/04/2016

17

TakeSample action

Goal

The takeSample(withReplacement, n, [seed])
action returns a local Java list of objects
containing n random elements of the considered
RDD

Method

The takeSampleaction is based on the

method of the class

withReplacement specifies if the random sample is with
replacement (true) or not (false)

35

TakeSample action

Method
The
method of
the class is used when we want to

set the seed

36

25/04/2016

18

TakeSample action: Example 1

Create an RDD of integers containing the
values {1, 5, 3, 3, 2}

Retrieve randomly, without replacement, 2
values from the created RDD and store them
in a local Java list that is instantiated in the
Driver

37

TakeSample action: Example 1

|/ Create an RDD of integers. Load the values 1, 5, 3, 3,2 in this RDD
List<Integer> inputList = Arrays.asList(a, 5, 3, 3, 2);

1

JavaRDDc<Integer> inputRDD = sc.parallelize(inputList);

// Retrieve randomly two elements of the inputRDD and store them in
[/ alocal Java list
List<Integer> randomValues= inputRDD.takeSample(true, 2);

38

25/04/2016

19

Reduce action

Reduce action

Goal

Return a single Java object obtained by combining
the objects of the RDD by using a user provide
“function”

The provided “function” must be associative and
commutative

otherwise the result is not deterministic
The returned object and the ones of the “input” RDD are
all instances of the same class (T)

40

25/04/2016

20

Reduce action

Method

The reduce action is based on the

method of the
class

An object of a class implementing the
Function2<T, T, T> interface is passed to the
reduce method
The method of
the Function2<T, T, T> interface must be implemented

It contains the code that is applied to combine the values of the
elements of the RDD

41

Reduce action: how it woks

Suppose L contains the list of elements of the
“input” RDD

To compute the final element, the reduce action
operates as follows

Apply the user specified “function” on a pair of
elements e, and e, occurring in L and obtain a new

element
Remove the “original” elements ¢, and e, from [and
then insert the element in

If L contains only one value then return it as final
result of the reduce action. Otherwise, return to step
1

42

25/04/2016

21

Reduce action: how it woks

If the “function” is associative and
commutative, the computation of the reduce
action can be performed in parallel without
problems

Otherwise the result is not deterministic and
depends on the order of execution of the
function on the elements of the RDD

43

Reduce action: Example 1

Create an RDD of integers containing the

values {1, 2, 3, 3}

Compute the sum of the values occurring in
the RDD and “store” the result in a local Java
integer variable in the Driver

A

25/04/2016

22

Reduce action: Example 1

// Define a class implementing the Function2 interface
class SumClass implements Function2<Integer, Integer, Integer> {
[/ Implement the call method
public Integer call(Integer elementa, Integer element2) {
return elementi+elementz;

// Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputListReduce = Arrays.asList(1, 2, 3, 3);

1

JavaRDDx<Integer> inputRDDReduce = sc.parallelize(inputListReduce);

// Compute the sum of the values;
Integer sum= inputRDDReduce.reduce(new SumClass());

45

Reduce action: Example 2

Create an RDD of integers containing the
values {1, 2, 3, 3}

Compute the maximum value occurring in the
RDD and “store” the result in a local Java
integer variable in the Driver

46

25/04/2016

23

Reduce action: Example 2

|/ Define a class implementing the Function2 interface
class MaxClass implements Function2<Integer, Integer, Integer> {
/[Implement the call method
public Integer call(Integer elements, Integer element2) {
if (elementi>element2)
return elementa;
else
return elementz;

|/ Create an RDD of integers. Load the values 1, 2, 3, 3 in this RDD
List<Integer> inputListReduce = Arrays.asList(1, 2, 3, 3);
JavaRDD«<Integer> inputRDDReduce = sc.parallelize(inputListReduce);

/] Compute the maximum value
Integer max = inputRDDReduce.reduce(new MaxClass());

47

Reduce action: Example 2

The same problem can be more easily solve
by using the top action

48

25/04/2016

24

Solution based on the Top action

// Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputListReduce = Arrays.asList(1, 2, 3, 3);

1

JavaRDDx<Integer> inputRDDReduce = sc.parallelize(inputListReduce);

[/ Compute the maximum value
List<Integer> top1 = inputRDDReduce.top(1);
Integer max = top1.get(0);

49

Fold action

25/04/2016

25

25/04/2016

Fold action

Goal

Return a single Java object obtained by combining
the objects of the RDD by using a user provide
“function”

The provided “function” must be and

Otherwise the result is not deterministic

An initial “zero” value is also specified

Fold action

Method

The fold action is based on the

method of
the class

The “zero” value of type T is passed

And an object of a class implementing the
Function2<T, T, T> interface is passed to the fold
method
The method of the
Function2<T, T, T> interface must be implemented

It contains the code that is applied to combine the values of the
elements of the RDD

26

Fold vs Reduce

Fold vs Reduce
Fold is characterized by the “zero” value

This is the only difference with respect to the reduce()
action

53

Aggregate action

25/04/2016

27

Aggregate action

Goal

Return a single Java object obtained by combining
the objects of the RDD and an initial “zero” value
by using two user provide “functions”
The provided “functions” must be associative and
commutative
otherwise the result is not deterministic

The returned object and the ones of the “input” RDD
can be instances of different classes
This is the main difference with respect to fold() and reduce ()

55

Aggregate action

Method

The aggregate action is based on the

<U> U aggregate(U zeroValue, Function2<U,T,U>
seqOp, Function2<U,U,U> combOp) method of the
JavaRDD<T> class

The “input” RDD contains objects of type T while the
returned object is of type U
We need one “function” for merging an element of type T with an
element of type U to return a new element of type U
It is used to merge the elements of the input RDD and the zero value

We need one “function” for merging two elements of type U to
return a new element of type U

It is used to merge two elements of type U obtained as partial results
generated by two different partitions

56

25/04/2016

28

Aggregate action

The first “function” is based on a class

implementing the Function2<U, T, U> interface
The method of
the Function2<U, T, U> interface must be implemented

It contains the code that is applied to combine the zero value, and
the intermediate values, with the elements of the RDD

The second “function” is based on a class
implementing the Function2<U, U, U> interface
The method of

the Function2<U, U, U> interface must be implemented

It contains the code that is applied to combine two elements of
type U returned as partial results by two different partitions

57

Aggregate action: how it woks

Suppose that L contains the list of elements of the “input”
RDD and this RDD is split in a set of partitions, i.e., a set of
lists

The aggregate action computes a partial result in each
partition and then combines/merges the results.

It operates as follows

A?gregate the partial results in each partition, obtaining a set
of partial results (of type U)

Apply the second user specified “function” on a pair of
elements p, and p, in P and obtain a new element

Remove the “original” elements p, and p, from P and then
insert the element in

If P contains only one value then return it as final result of the
aggregate action. Otherwise, return to step 2

58

25/04/2016

29

Aggregate action: how it woks

Suppose that
is the list of elements on the i-th partition of the “input”
RDD
And is the initial zero value

To compute the partial result over the elements in
the aggregate action operates as follows

Set to (accumulator=zeroValue)
Apply the first user specified “function” on
and an elements e in L, and update with the

value returned by the function
Remove the “original” elements e, from

If L;is empty return as (final) partial result
of the current partition. Otherwise, return to step 2

59

Aggregate action: Example 1

Create an RDD of integers containing the
values {1, 2, 3, 3}

Compute both the sum of the values
occurring in the input RDD and the number of
elements of the input RDD and finally “store”
in a local Java variable of the Driver the
average computed over the values of the
input RDD

60

25/04/2016

30

Aggregate action: Example 1

// Define a class to store two integers: sum and numElements
class AvgCount implements Serializable {

public int sum;

public int numElements;

public AvgCount(int sum, int numElements){
this.sum = sum;
this.numElements = numElements;

}

public double avg() {
return total / (double) num;

}

61

Aggregate action: Example 1

// Define a first class implementing the Functionz interface
/[This class contains the call method that is used to combine
I/ the elements of the input RDD with the zero value and the
// intermediate values of type AvgCount
class AggregatelnputElements implements Function2<AvgCount,
Integer, AvgCount> {
public AvgCount call(AvgCount a, Integer x) {
a.sum =a.sum +x;
a.numElements = a.numElements + 1;

return a;

62

25/04/2016

31

25/04/2016

Aggregate action: Example 1

// Define a first class implementing the Functionz interface
[/ This class caontains the call method that is sed to combine

class AggregatelnputElements implements Function2<AvgCount,
Integer, AvgCount> {
publig AvgCount call(AvgCount a, Integer x) {
a.sum =a.sum +x;
a.numElements = a.numElements + 1;

return a;

63

Aggregate action: Example 1

// Define a second class implementing the Function2 interface
/[This class contains the call method that is used to combine
I/ two elements of type AvgCount returned as partial results
// by two different partitions
class AggregatelntermediateResults implements Function2<AvgCount,
AvgCount, AvgCount> {
public AvgCount call(AvgCount a, AvgCount b) {
a.sum =a.sum + b.sum;
a.numElements = a.numElements + b.numElements;

return a;

64

32

25/04/2016

Aggregate action: Example 1

// Define a second class implementing the Function2 interface
[/ This class caontains the call method that is ised to combine

class AggregatelntermediateResults implements Functionz<AvgCount,
AvgCount, AvgCount> §
publid AvgCount call(AvgCount a, AvgCount b) {
a.sum =a. sum + b.sum;
a.numElements = a.numElements + b.numElements;

return a;

65

Aggregate action: Example 1

|/ Create an RDD of integers. Load the values 1, 2, 3, 3in this RDD
List<Integer> inputListAggr = Arrays.asList(1, 2, 3, 3);
JavaRDDc<Integer> inputRDDAggr = sc.parallelize(inputListAggr);

// Compute sum and number of elements of inputRDDAggr

Integer sum=inputRDDAggr.

AvgCount zeroValue = new AvgCount(o, 0);

AvgCount result = inputRDDAggr.aggregate(zeroValue,

new AggregatelnputElements(), new AggregatelntermediateResults());

// Compute the average value
double avg = result.avg();

66

33

Aggregate action: Simulation

inputRDDAggr = {1, 2, 3, 3}
Suppose it is split in following two partitions
{1, 23 and {3, 3}

67

Aggregate action: Simulation

Partition #1 Partition #2

{1, 2} zeroValue=(0,0) {3,3} zeroValue=(0,0)

68

25/04/2016

34

25/04/2016

Aggregate action: Simulation

Partition #1 Partition #2

f1,2} zeroValue=(0,0) {3,3} zeroValue=(0,0)

)

69

Aggregate action: Simulation

Partition #1 Partition #2

{1, 2} zeroValue=(0,0) {3,3} zeroValue=(0,0)

L (22)

—— (1,2)

35

Aggregate action: Simulation

Partition #1

{1, 2} zeroValue=(0,0)

Partition

{3,3} zeroVal

.

#2

ue=(0,0)

/1)

12)

Partition #1

{1, 2} zeroValue=(0,0)

Partition

{3,3} zeroVal

.

#2

ve=(0,0)

/1)

result=(9,4)

12)

—

25/04/2016

36

25/04/2016

Basic actions: Summary

Basic actions: Summary

All the examples reported in the following
tables are applied on inputRDD that is and
RDD of integers containing the following
elements (i.e., values)

{1l 2l 3’ 3}

74

37

Basic actions: Summary

25/04/2016

java.util.List<T> collect()

long count()

java.util.Map<T,java.lang.L
ong> countByValue()

Return a (Java) List
containing all the elements
of the RDD on which it is
applied.

The objects of the RDD and
objects of the returned list
are objects of the same class.

inputRDD.collect()

Return the number of
elements of the RDD

inputRDD.count()

Return a Map object
containing the information
about the number of times
each element occurs in the
RDD.

inputRDD.
countByValue()

{1,2,3,3}

4

i(z, 2),
(2,2),

(3, 2)%

75

Basic actions: Summary

java.util.List<T> take(int n)

T first()

java.util.List<T> top(int n)

Return a (Java) List
containing the first num
elements of the RDD.

The objects of the RDD and
objects of the returned list
are objects of the same class.

inputRDD.take(2)

Return the first element of first()

the RDD

Return a (Java) List
containing the top num
elements of the RDD based
on the default sort
order/comparator of the
objects.

The objects of the RDD and
objects of the returned list
are objects of the same class.

inputRDD.top(2)

{1,2}

{1}

3,3}

76

38

Basic actions: Summary

java.util.List<T>
takeSample(boolean
withReplacement, int n,
[long seed])

T
reduce(Function2<T, T, T>
f)

Return a (Java) List
containing a random sample
of size n of the RDD.

The objects of the RDD and
objects of the returned list
are objects of the same class.

Return a single Java object
obtained by combining the
values of the objects of the
RDD by using a user provide
“function”. The provided
“function” must be
associative and commutative
The object returned by the
method and the objects of
the RDD belong to the same
class.

inputRDD.
takeSample
(false, 1)

The passed
“function” is the
sum function

Nondet
erminist
ic

77

Basic actions: Summary

T fold(T zeroValue,
Function2<T,T,T>f)

<U> U aggregate(

U zeroValue,
Function2<U,T,U> seqOp,
Function2<U,U,U>
combOp)

Same as reduce but with the
provided zero value.

Similar to reduce() but used
to return a different type.

The passed
“function” is the
sum function and

the passed

zeroValueis o

Compute a pair of
integers where
the first one is the
sum of the values
of the RDD and
the second the
number of
elements

(9, 4)

78

25/04/2016

39

