Big data: architectures and data analytics

Spark - Exercises

Exercise #43 - 1

- Critical bike sharing station analysis
- Input:
 - A textual csv file containing the occupancy of the stations of a bike sharing system
 - The sampling rate is 5 minutes
 - Each line of the files contains one sensor reading/sample has the following format stationId,date,hour,minute,num_of_bikes,num_of_free_slots
 - Some readings are missing due to temporarily malfunctions of the stations
 - Hence, the number of samplings is not exactly the same for all stations
 - The number of distinct stations is 100

3

Exercise #43 – 2

- Input:
 - A second textual csv file containing the list of neighbors of each station
 - Each line of the files has the following format stationId_x, list of neighbors of stationId_x
 - E.g.,s1,s2 s3means that s2 and s3 are neighbors of s1

Exercise #43 – 3

Outputs:

- Compute the percentage of critical situations for each station
 - A station is in a critical situation if the number of free slots is below a user provided threshold (e.g., 3 slots)
 - The percentage of critical situations for a station Si is defined as (number of critical readings associated with Si)/(total number of readings associated with Si)

5

Exercise #43 – 4

- Store in an HDFS file the stations with a percentage of critical situations higher than 80% (i.e., stations that are almost always in a critical situation and need to be extended)
 - Each line of the output file is associated with one of the selected stations and contains the percentage of critical situations and the stationId
 - Sort the stored stations by percentage of critical situations

Exercise #43 – 5

- Compute the percentage of critical situations for each pair (timeslot, station)
 - Timeslot can assume the following 6 values
 - [o-3]
 - **[**4-7]
 - **[8-11]**
 - **[12-15]**
 - **•** [16-19]
 - **[20-23]**

7

Exercise #43 – 6

- Store in an HDFS file the pairs (timeslot, station) with a percentage of critical situations higher than 80% (i.e., stations that need rebalancing operations in specific timeslots)
 - Each line of the output file is associated with one of the selected pairs (timeslot, station) and contains the percentage of critical situations and the pair (timeslot, stationId)
 - Sort the result by percentage of critical situations

Exercise #43 – 7

- Select a reading (i.e., a line) of the first input file if and only if the following constraints are true
 - The line is associated with a full station situation
 - i.e., the station Si associated with the current line has a number of free slots equal to o
 - All the neighbor stations of the station Si are full in the time stamp associated with the current line
 - i.e., bikers cannot leave the bike at Station Si and also all the neighbor stations are full in the same time stamp
- Store the selected readings/lines in an HDFS file and print on the standard output the total number of such lines