Data mining fundamentals

Elena Baralis Politecnico di Torino

Data analysis

- Most companies own huge databases containing
 - operational data
 - textual documents
 - experiment results
- These databases are a potential source of useful information

Data analysis

- Information is "hidden" in huge datasets
 - not immediately evident
 - human analysts need a large amount of time for the analysis
 - most data is never analyzed at all

 $D_{M}^{B}G$

Data mining

- Non trivial extraction of
 - implicit
 - previously unknown
 - potentially useful

information from available data

- Extraction is automatic
 - performed by appropriate algorithms
- Extracted information is represented by means of abstract models

Example: biological data

- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)

- personal and demographic data
- exam results

- Textual data in public collections
 - heterogeneous formats, different objectives
 - scientific literature (PUBMed)
 - ontologies (Gene Ontology)

5

Biological analysis objectives

- Clinical analysis
 - detecting the causes of a pathology
 - monitoring the effect of a therapy
 - diagnosis improvement and definition of new specific therapies
- Bio-discovery
 - gene network discovery
 - analysis of multifactorial genetic pathologies
- Pharmacogenesis
 - lab design of new drugs for genic therapies

How can data mining contribute?

Analysis techniques

- Descriptive methods
 - Extract interpretable models describing data
 - Example: client segmentation
- Predictive methods
 - Exploit some known variables to predict unknown or future values of (other) variables
 - Example: "spam" email detection

Association rules

- Objective
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- Association rule diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer

19

Association rules

- Applications
 - market basket analysis
 - cross-selling
 - shop layout or catalogue design

Tickets at a supermarket counter

TID	Items
1	Bread, Coca Cola, Milk
2	Beer, Bread
3	Beer, Coca Cola, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coca Cola, Diapers, Milk

- Association rule
 - diapers \Rightarrow beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contain beer

Other data mining techniques

- Sequence mining
 - ordering criteria on analyzed data are taken into account

- example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data

- prediction of a continuous value
- example: prediction of stock quotes

example: intrusion detection in network traffic analysis

21

Open issues

- Scalability to huge data volumes
- Data dimensionality
- Complex data structures, heterogeneous data formats
- Data quality
- Privacy preservation
- Streaming data

