Data preprocessing

Elena Baralis and Tania Cerquitelli

Politecnico di Torino

- Record
 - Tables
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Attribute types

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

7

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, counts, or the set of words in a collection of documents
 - Often represented as integer variables.
 - Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - Practically, real values can only be measured and represented using a finite number of digits.
 - Continuous attributes are typically represented as floating-point variables.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?
- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

9

Missing Values

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc
 - More "stable" data
 - Aggregated data tends to have less variability

From: Tan. Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

13

Data reduction

- It generates a reduced representation of the dataset. This representation is smaller in volume, but it can provide similar analytical results
 - sampling
 - It reduces the cardinality of the set
 - feature selection
 - It reduces the number of attributes
 - discretization
 - It reduces the cardinality of the attribute domain

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

15

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Dimensionality Reduction

- Purpose:
 - Reduce amount of time and memory required by data mining algorithms
 - Allow data to be more easily visualized
 - May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principle Component Analysis
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

17

Discretization

- It splits the domain of a continuous attribute in a set of intervals
 - It reduces the cardinality of the attribute domain
- Techniques
 - N intervals with the same width $W=(v_{max}-v_{min})/N$
 - Easy to implement
 - It can be badly affected by outliers and sparse data
 - Incremental approach
 - N intervals with (approximately) the same cardinality
 - It better fits sparse data and outliers
 - Non incremental approach
 - clustering
 - It well fits sparse data and outliers

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Normalization

- It is a type of data transformation
 - The values of an attribute are scaled so as to fall within a small specified range, typically (-1,+1) or (0,+1)
- Techniques
 - min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- **z-score** normalization $v' = \frac{v mean_i}{stand_dev_a}$
- decimal scaling

$$v' = \frac{v}{10^7}$$
 j is the smallest integer such that max($|v'|$) < 1

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

21

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - d(p, q) ≥ 0 for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - d(p, q) = d(q, p) for all p and q. (Symmetry)
 - d $(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

A distance that satisfies these properties is a metric

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

23

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - s(p, q) = 1 (or maximum similarity) only if p = q.
 - s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

 $M_{\mathsf{01}} =$ the number of attributes where $p \mathrm{was} \ 0$ and $q \mathrm{was} \ 1$

 $M_{10} =$ the number of attributes where pwas 1 and qwas 0

 M_{00} = the number of attributes where pwas 0 and qwas 0

 $M_{11} =$ the number of attributes where pwas 1 and qwas 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes = $(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

From: Tan. Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

25

SMC versus Jaccard: Example

p = 10000000000 q = 0000001001

 $M_{01} = 2$ (the number of attributes where pwas 0 and qwas 1)

 $M_{10} = 1$ (the number of attributes where pwas 1 and qwas 0)

 $M_{00} = 7$ (the number of attributes where pwas 0 and qwas 0)

 $M_{11} = 0$ (the number of attributes where pwas 1 and qwas 1)

SMC = $(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, where \bullet indicates vector dot product and ||d|| is the length of vector d.
- Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_1 \bullet d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481$$

$$||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245$$

$$\cos(d_1, d_2) = .3150$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

27

Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:
 - $\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{th} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{th} attribute} \\ 1 & \text{otherwise} \end{array} \right.$
- 3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Combining Weighted Similarities

- May not want to treat all attributes the same.
 - Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = rac{\sum_{k=1}^{n} w_k \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^{n} w_k |p_k - q_k|^r\right)^{1/r}.$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006