Association Rules Fundamentals

Elena Baralis, <u>Tania Cerquitelli</u>, Silvia Chiusano Politecnico di Torino

Association rules

- Objective
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

Courter						
TID	Items					
1	Bread, Coke, Milk					
2	Beer, Bread					
3	Beer, Coke, Diapers, Milk					
4	Beer, Bread, Diapers, Milk					
5	Coke, Diapers, Milk					

- Association rule
 - $\mathsf{diapers} \Rightarrow \mathsf{beer}$
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contains beer

Association rule mining

Items

2

3

5

Bread, Coke, Milk

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

Coke, Diapers, Milk

Beer, Bread

- A collection of transactions is given
 - a transaction is a set of items
 - items in a transaction are not ordered
- Association rule

A,
$$B \Rightarrow C$$

- A, B = items in the rule body
- C = item in the rule head
- The ⇒ means co-occurrence
 - not causality
- Example
 - coke, diapers ⇒ milk

3

Transactional formats

- Association rule extraction is an exploratory technique that can be applied to any data type
- A transaction can be any set of items
 - Market basket data
 - Textual data
 - Structured data
 - **.** . . .

Definitions

- Itemset is a set including one or more items
 - Example: {Beer, Diapers}
- k-itemset is an itemset that contains k items
- Support count (#) is the frequency of occurrence of an itemset
 - Example: #{Beer, Diapers} = 2
- Support is the fraction of transactions that contain an itemset
 - Example: sup({Beer, Diapers}) = 2/5
- Frequent itemset is an itemset whose support is greater than or equal to a minsup threshold

TID	Items					
1	Bread, Coke, Milk					
2	Beer, Bread					
3	Beer, Coke, Diapers, Milk					
4	Beer, Bread, Diapers, Milk					
5	Coke, Diapers, Milk					

7

Rule quality metrics

Given the association rule

$$A \Rightarrow B$$

- A, B are itemsets
- Support is the fraction of transactions containing both A and B

#{A,B} |T|

- |T| is the cardinality of the transactional database
- a priori probability of itemset AB
- rule frequency in the database
- Confidence is the frequency of B in transactions containing A

 $\frac{\sup(A,B)}{\sup(A)}$

- conditional probability of finding B having found A
- "strength" of the "⇒"

Association rule extraction

- Given a set of transactions T, association rule mining is the extraction of the rules satisfying the constraints
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- The result is
 - complete (all rules satisfying both constraints)
 - correct (only the rules satisfying both constraints)
- May add other more complex constraints

Association rule extraction

- Brute-force approach
 - enumerate all possible permutations (i.e., association rules)
 - compute support and confidence for each rule
 - prune the rules that do not satisfy the minsup and minconf constraints
- Computationally unfeasible
- Given an itemset, the extraction process may be split
 - first generate frequent itemsets
 - next generate rules from each frequent itemset
- Example
 - Itemset {Milk, Diapers} sup=60%
 - Rules Milk ⇒ Diapers (conf=75%) Diapers ⇒ Milk (conf=100%)

11

Association rule extraction

- (1) Extraction of frequent itemsets
 - many different techniques
 - level-wise approaches (Apriori, ...)
 - approaches without candidate generation (FP-growth, ...)
 - other approaches
 - most computationally expensive step
 - limit extraction time by means of support threshold
- (2) Extraction of association rules
 - generation of all possible binary partitioning of each frequent itemset
 - possibly enforcing a confidence threshold

Frequent Itemset Generation

- Brute-force approach
 - each itemset in the lattice is a candidate frequent itemset
 - scan the database to count the support of each candidate
 - match each transaction against every candidate
 - Complexity ~ O(|T| 2^d w)
 - |T| is number of transactions
 - d is number of items
 - w is transaction length

Improving Efficiency

- Reduce the number of candidates
 - Prune the search space
 complete set of candidates is 2^d
- Reduce the number of transactions
 - Prune transactions as the size of itemsets increases
 reduce |T|
- Reduce the number of comparisons
 - Equal to |T| 2^d
 - Use efficient data structures to store the candidates or transactions

15

The Apriori Principle

"If an itemset is frequent, then all of its subsets must also be frequent"

- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
 - Given two arbitrary itemsets A and B
 if A ⊆ B then sup(A) ≥ sup(B)
- It reduces the number of candidates

Factors Affecting Performance

- Minimum support threshold
 - lower support threshold increases number of frequent itemsets
 - larger number of candidates
 - larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases in dense data sets
 - may increase max length of frequent itemsets and traversals of hash tree
 - number of subsets in a transaction increases with its width

FP-growth Algorithm [Han00]

- Exploits a main memory compressed rappresentation of the database, the FP-tree
 - high compression for dense data distributions
 - less so for sparse data distributions
 - complete representation for frequent pattern mining
 - enforces support constraint
- Frequent pattern mining by means of FP-growth
 - recursive visit of FP-tree
 - applies divide-and-conquer approach
 - decomposes mining task into smaller subtasks
- Only two database scans
 - count item supports + build FP-tree

Interestingness Measures

- A large number of pattern may be extracted
 - rank patterns by their interestingness
- Objective measures
 - rank patterns based on statistics computed from data
 - initial framework [Agr94] only considered support and confidence
 - other statistical measures available
- Subjective measures
 - rank patterns according to user interpretation [Silb98]
 - interesting if it contradicts the expectation of a user
 - interesting if it is actionable

23

Confidence measure: always reliable?

- 5000 high school students are given
 - 3750 eat cereals
 - 3000 play basket
 - 2000 eat cereals and play basket
- Rule

play basket \Rightarrow eat cereals sup = 40%, conf = 66,7%

is misleading because eat cereals has sup 75% (>66,7%)

- Problem caused by high frequency of rule head
 - negative correlation

	basket	not basket	total
cereals	2000	1750	3750
not cereals	1000	250	1250
total	3000	2000	5000

G. College	#	Measure	Formula
	1	ϕ -coefficient	$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1 - P(A))(1 - P(B))}}$
3	2	Goodman-Kruskal's (λ)	$\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})} \frac{1}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
	3	Odds ratio (a)	$P(A,B)P(\overline{A},\overline{B})$
	4	Yule's Q	$\frac{P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(AB)-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	$\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(A,B)} = \sqrt{\alpha} - 1$
	6	Kappa (κ)	$ \sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)} \qquad \sqrt{\alpha} + 1 $ $ P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B}) $ $ 1 - P(A)P(B) - P(\overline{A})P(\overline{B}) $ $ \sum \sum P(A,B,\overline{A})P(A,B,\overline{A})P(A,B,\overline{A}) $
	7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^3 + P(\overline{B} A)^3] + P(\overline{A})[P(B \overline{A})^3 + P(\overline{B} \overline{A})^3] \right)$
			$-P(B)^2-P(\overline{B})^2$,
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
			$-P(A)^2 - P(\overline{A})^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
_	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
l pBc	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
TAT	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$