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{} What is Cluster Analysis?

= Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized
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= Understanding

= Group related documents
for browsing, group genes
and proteins that have
similar functionality, or
group stocks with similar
price fluctuations

= Summarization

= Reduce the size of large
data sets

Applications of Cluster Analysis

Discovered Clusters

Industry Group

= W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN, Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,
Compagq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN, Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP, Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP, Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technology1-DOWN

Technology2-DOWN

Financial-DOWN

Oil-up

Clustering precipitation in
Australia
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%) Types of Clusterings

= A clustering is a set of clusters

= Important distinction between
hierarchical and partitional sets of
clusters

= Partitional Clustering

= A division data objects into non-overlapping subsets
(clusters) such that each data object is in exactly
one subset

= Hierarchical clustering

= A set of nested clusters organized as a hierarchical
tree
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Partitional Clustering

Original Points A Partitional Clustering
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I

p2 p3 p4
Traditional Hierarchical Clustering Traditional Dendrogram
. pl p2  p3 p4
Non-traditional Hierarchical Clustering Non-traditional Dendrogram
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= K-means and its variants
= Hierarchical clustering

= Density-based clustering

B .
DN‘G | From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

DataBase and Data Mining Group 4



Politecnico di Torino Clustering fundamentals

K-means Clustering

= Partitional clustering approach

= Each cluster is associated with a (center point)
= Each point is assigned to the cluster with the closest
centroid

= Number of clusters, K, must be specified
= The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat

3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5: until The centroids don’t change
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Two different K-means Clusterings

: Original Points
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Importance of Choosing Initial Centroids

Iteration 6
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids

Iteration 5
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G Evaluating K-means Clusters
= Most common measure is Sum of Squared Error (SSE)
= For each point, the error is the distance to the nearest cluster
= To get SSE, we square these errors and sum them.

SSE = i Zdistz(m,, X)

. L. I=l xel . . .
= xis a data point in cluster' Gand m; is the representative point for
cluster G
= can show that m;corresponds to the center (mean) of the cluster
= Given two clusters, we can choose the one with the smallest error
= One easy way to reduce SSE is to increase K, the number of clusters

= A good clustering with smaller K can have a lower SSE than a poor
clustering with higher K
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;. Solutions to Initial Centroids Problem
= Multiple runs
= Helps, but probability is not on your side
= Sample and use hierarchical clustering to
determine initial centroids
= Select more than k initial centroids and then
select among these initial centroids
= Select most widely separated
= Postprocessing
= Bisecting K-means
= Not as susceptible to initialization issues
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{g¢ Pre-processing and Post-processing

= Pre-processing
= Normalize the data
= Eliminate outliers

= Post-processing

= Eliminate small clusters that may represent
outliers

= Split‘loose’ clusters, i.e., clusters with relatively
high SSE

= Merge clusters that are ‘close’ and that have
B relatively low SSE
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’ Limitations of K-means

= K-means has problems when clusters are of
differing
= Sizes
= Densities
= Non-globular shapes

= K-means has problems when the data
contains outliers.
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Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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One solution is to use many clusters.
B Find parts of clusters, but need to put together.
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g Hierarchical Clustering

= Produces a set of nested clusters organized
as a hierarchical tree
= Can be visualized as a dendrogram

= A tree like diagram that records the sequences of
merges or splits

0.05| ’——’
0 1
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=4} Strengths of Hierarchical Clustering

= Do not have to assume any particular number
of clusters

= Any desired number of clusters can be obtained
by ‘cutting’ the dendogram at the proper level

= They may correspond to meaningful
taxonomies

= Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)
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2} Hierarchical Clustering

= Two main types of hierarchical clustering
= Agglomerative:
= Start with the points as individual clusters

= At each step, merge the closest pair of clusters until only one cluster (or
k clusters) left

= Divisive:
= Start with one, all-inclusive cluster

= At each step, split a cluster until each cluster contains a point (or there
are k clusters)

= Traditional hierarchical algorithms use a similarity or distance

matrix
= Merge or split one cluster at a time
D§‘G | . . — _ | 27
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A Agglomerative Clustering Algorithm

= More popular hierarchical clustering technique

= Basic algorithm is straightforward
1. Compute the proximity matrix
> Let each data point be a cluster

3. Repeat
4 Merge the two closest clusters
5. Update the proximity matrix

6. Until only a single cluster remains

= Key operation is the computation of the proximity of
two clusters

= Different approaches to defining the distance between
clusters distinguish the different algorithms
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7} How to Define Inter-Cluster Similarity

plL | p2 [ P3| p4|P5

Similarity?

e MIN P
o MAX '
e Group Average

e Distance Between Centroids Proximity Matrix
[ )

Other methods driven by an objective
function
— Ward’s Method uses squared error
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Ward’s Method

Group Average
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DG

DBSCAN
DBSCAN is a density-based algorithm.

= Density = number of points within a specified radius (Eps)

= A pointis a core point if it has more than a specified number
of points (MinPts) within Eps
= These are points that are at the interior of a
cluster

= A border point has fewer than MinPts within Eps, but is in
the neighborhood of a core point

= A noise point is any point that is not a core point or a border
point.

| From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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DBSCAN: Core, Border, and Noise Points
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Original Points Point types: core,
border and noise

Eps = 10, MinPts = 4
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Original Points Clusters

¢ Resistant to Noise

e Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well

(MinPts=4, Eps=9.75).

Original Points

e Varying densities

¢ High-dimensional data
B

(MinPts=4 Ens=9 62)
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Measures of Cluster Validity

= The validation of clustering structures is the most difficult task

= To evaluate the “goodness” of the resulting clusters, some
numerical measures can be exploited

= Numerical measures are classified into two main classes

» External Index: Used to measure the extent to which cluster labels
match externally supplied class labels.
= e.g., entropy, purity
= Internal Index: Used to measure the goodness of a clustering
structure without respect to external information.

= e.9., Sum of Squared Error (SSE), cluster cohesion, cluster separation, Rand-
Index, adjusted rand-index
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247 External Measures of Cluster Validity: Entropy and Purity

Table 5.9, K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 06 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster j belongs to class ¢ as follows:
Pij = m‘-yfmj, where m; is the number of values in cluster 7 and m,; is the number of values
of class 7 in cluster 7. Then using this class distribution, the entropy of each cluster j is
calculated using the standard formula e; — Zf‘;lpu log, pi;, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = ZK e, where m; is the size of cluster

i=1 m
34, K is the number of clusters, and m ig the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by purity; =

max p;; and the overall purity of a clustering by purity — ZK B ity

i=1 m
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Internal Measures: Cohesion and Separation

= A proximity graph based approach can also be used for
cohesion and separation.
= Cluster cohesion is the sum of the weight of all links within a cluster.

= Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation
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KER = s g
;Z,_ Final Comment on Cluster Validity
“The validation of clustering structures is
the most difficult and frustrating part of
cluster analysis.

Without a strong effort in this direction,
cluster analysis will remain a black art
accessible only to those true believers who
have experience and great courage.”

Algorithms for Clustering Data, )Jain and
Dubes
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