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 The amount of data increases every day
 Some numbers (∼ 2012):

 Data processed by Google every day: 100+ PB

 Data processed by Facebook every day: 10+ PB

 To analyze them, systems that scale with 
respect to the data volume are needed
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 Analyze 10 billion web pages
 Average size of a webpage: 20KB
 Size of the collection: 10 billion x 20KB = 

200TB
 Hard disk read bandwidth: 100MB/sec
 Time needed to read all web pages (without 

analyzing them): 2 million seconds = more 
than 24 days

 A single node architecture is not adequate

4
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 Failures are part of everyday life, especially in 
data center
 A single server stays up for 3 years (~1000 days)

▪ 10 servers  1 failure every 100 days (~3 months)

▪ 100 servers   1 failure every 10 days 

▪ 1000 servers   1 failure/day

 Sources of failures
 Hardware/Software

 Electrical, Cooling, ...

 Unavailability of a resource due to overload
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 LALN data [DSN 2006]
 Data for  5000 machines, for 9 years

 Hardware failures: 60%, Software: 20%, Network 
5%

 DRAM error analysis [Sigmetrics 2009]
 Data for 2.5 years

 8% of DIMMs affected by errors
 Disk drive failure analysis [FAST 2007]

 Utilization and temperature major causes of 
failures

6
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 Failure types

 Permanent

▪ E.g., Broken motherboard

 Transient

▪ E.g., Unavailability of a resource due to overload

7

 Network becomes the bottleneck if big amounts 
of data need to be exchanged between 
nodes/servers
 Network bandwidth: 1Gbps
 Moving 10 TB from one server to another takes 1 day
 Data should be moved across nodes only when it is 
indispensable

 Usually, codes/programs are small (few MBs)
Move code/program and computation to data 

8
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of data need to be exchanged between 
nodes/servers
 Network bandwidth: 1Gbps
 Moving 10 TB from one server to another takes 1 day
 Data should be moved across nodes only when it is 
indispensable

 Usually, codes/programs are small (few MBs)
Move code/program and computation to data 

Data locality
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 Small data

 Data can be completely 
loaded in main memory

Memory

Disk

CPU
Machine Learning, Statistics

Server (Single node)
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 Large data

 Data can not be completely 
loaded in main memory

▪ Load in main memory one chunk 
of data at a time

▪ Process it and store some statistics

▪ Combine statistics to compute 
the final result

Memory

Disk

CPU
“Classical” data mining

Server (Single node)
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 Cluster of servers (data center)

 Computation is distributed across servers

 Data are stored/distributed across servers

 Standard architecture in the Big data context

 Cluster of commodity Linux nodes/servers

▪ 32 GB of main memory per node

 Gigabit Ethernet interconnection
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 Current systems must scale to address

 The increasing amount of data to analyze

 The increasing number of users to serve

 The increasing complexity of the problems

 Two approaches are usually used to address 
scalability issues

 Vertical scalability (scale up)

 Horizontal scalability (scale out)
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 Vertical scalability (scale up)

 Add more power/resources (main memory, CPUs) 
to a single node (high-performing server)

▪ Cost of super-computers is not linear with respect to 
their resources

 Horizontal scalability (scale out)

 Add more nodes (commodity servers) to a system

▪ The cost scales approximately linearly with respect to 
the number of added nodes

▪ But data center efficiency is a difficult problem to solve

18
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 For data-intensive workloads, a large number of 
commodity  servers is preferred over a small 
number of high-performing servers
 At the same cost, we can deploy a system that 

processes data more efficiently and is more fault-
tolerant

 Horizontal scalability (scale out ) is preferred for 
big data applications 
 But distributed computing is hard
New systems hiding the complexity of the distributed part of 

the problem to developers are needed
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 Distributed programming is hard

 Problem decomposition and parallelization

 Task synchronization

 Task scheduling of distributed applications is 
critical

 Assign tasks to nodes by trying to 

▪ Speed up the execution of the application 

▪ Exploit (almost) all the available resources

▪ Reduce the impact of  node failures

20
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 Distributed data storage

 How do we store data persistently on disk and 
keep it available if nodes can fail?

▪ Redundancy is the solution, but it increases the 
complexity of the system

 Network bottleneck

 Reduce the amount of data send through the 
network

▪ Move computation (and code) to data
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 Distributed computing is not a new topic
 HPC (High-performance computing) ~1960

 Grid computing ~1990

 Distributed databases ~1990
 Hence, many solutions to the mentioned 

challenges are already available
 But we are now facing big data driven-

problems
The former solutions are not adequate to address 

big data volumes

22
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 Typical Big Data Problem
 Iterate over a large number of records/objects 
 Extract something of interest from each
 Aggregate intermediate results
 Generate final output

 The challenges: 
 Parallelization
 Distributed storage of large data sets (Terabytes, 

Petabytes) 
 Node Failure management
 Network bottleneck
 Diverse input format (data diversity & heterogeneity)

23
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 Scalable fault-tolerant distributed system for 
Big Data
 Distributed Data Storage 

 Distributed Data Processing 

 Borrowed concepts/ideas from the systems 
designed at Google (Google File System for 
Google’s MapReduce) 

 Open source project under the Apache license
▪ But there are also many commercial implementations 

(e.g., Cloudera, Hortonworks, MapR)   

25

 Dec 2004 – Google published a paper about GFS
 July 2005 – Nutch uses MapReduce
 Feb 2006 – Hadoop becomes a Lucene

subproject
 Apr 2007 –Yahoo! runs it on a 1000-node cluster
 Jan 2008 – Hadoop becomes an Apache Top 

Level Project
 Jul 2008 – Hadoop is tested on a 4000 node 

cluster
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 Feb 2009 – The Yahoo! Search Webmap is a 
Hadoop application that runs on more than 
10,000 core Linux cluster

 June 2009 –Yahoo! made available the source 
code of its production version of Hadoop

 In 2010 Facebook claimed that they have the 
largest Hadoop cluster in the world with 21 
PB of storage
 On July 27, 2011 they announced the data has 

grown to 30 PB.

27

 Amazon
 Facebook
 Google
 IBM
 Joost
 Last.fm
 New York Times
 PowerSet
 Veoh
 Yahoo!
 …..

28
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 Hadoop
 Designed for Data intensive workloads

 Usually, no CPU demanding/intensive tasks
 HPC (High-performance computing)

 A supercomputer with a high-level computational 
capacity
▪ Performance of a supercomputer is measured in 

floating-point operations per second (FLOPS)

 Designed for CPU intensive tasks

 Usually it is used to process “small” data sets

29

 Core components of Hadoop:
 Distributed Big Data Processing Infrastructure based 

on the MapReduce programming paradigm
▪ Provides a high-level abstraction view

▪ Programmers do not need to care about task scheduling and 
synchronization

▪ Fault-tolerant
▪ Node and task failures are automatically managed by the Hadoop

system

 HDFS (Hadoop Distributed File System)
▪ Fault-tolerant

▪ High availability distributed storage

30
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 Separates the what from the how

 Hadoop programs are based on the MapReduce
programming paradigm

 MapReduce abstracts away the “distributed” part 
of the problem (scheduling, synchronization, etc)

▪ Programmers focus on what

 The distributed part (scheduling, synchronization, 
etc) of the problem is handled by the framework

▪ The Hadoop infrastructure focuses on how

35

 But an in-depth knowledge of the Hadoop
framework is important to develop efficient 
applications

 The design of the  application must exploit data 
locality and limit network usage/data sharing

36
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 HDFS 
 Standard Apache Hadoop distributed file system
 Provides global file namespace
 Stores data redundantly on multiple nodes to provide 

persistence and availability
▪ Fault-tolerant file system

 Typical usage pattern
 Huge files (GB to TB)
 Data is rarely updated
 Reads and appends are common 

▪ Usually, random read/write operations are not performed

37

 Each  file is split in “chunks” that are spread 
across the servers

 Each chuck is replicated on different servers 
(usually there are 3 replicas per chuck)

▪ Ensures persistence and availability

▪ To increase persistence and availability, replicas are 
stored in different racks, if it is possible

 Typically each chunk is 64-128MB

38
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 The Master node, a.k.a. Name Nodes in HDFS, is 
a special node/server that
 Stores HDFS metadata

▪ E.g., the mapping between the name of a file and the location 
of its chunks

 Might be replicated
 Client applications: file access through HDFS 

APIs
 Talk to the master node to find data/chuck servers 

associated with the file of interest 

 Connect to the selected chunk servers to access data
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 Many Hadoop-related projects/systems are 
available
 Pig

▪ A data flow language and execution environment, based on 
MapReduce, for exploring very large datasets 

 Hive
▪ A distributed data warehouse, based on MapReduce, for 

querying data stored in HDFS by means of a query language 
based on SQL

 HBase
▪ A distributed column-oriented database. HBase uses HDFS 

for storing data

41

 Sqoop

▪ A tool for efficiently moving data between relational 
databases and HDFS

 ZooKeeper

▪ A distributed coordination service. It provides primitives 
such as distributed locks 

 ….

 Each project/system addresses one specific 
class of problems

42
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 Input

 A large textual file of words

 Problem

 Count the number of times each distinct word 
appears in the file

 Output

 A list of pairs <word, number of occurrences in the 
input file> 
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 Case 1: Entire file fits in main memory

 Case 1: Entire file fits in main memory

 A traditional single node approach is probably the 
most efficient solution in this case

▪ The complexity and overheads of a distributed system 
impact negatively on the performance when files of few 
GBs are  analyzed
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 Case 1: Entire file fits in main memory

 A traditional single node approach is probably the 
most efficient solution in this case

▪ The complexity and overheads of a distributed system 
impact negatively on the performance when files of few 
GBs are  analyzed

 Case 2: File too large to fit in main memory

 Case 1: Entire file fits in main memory

 A traditional single node approach is probably the 
most efficient solution in this case

▪ The complexity and overheads of a distributed system 
impact negatively on the performance when files of few 
GBs are  analyzed

 Case 2: File too large to fit in main memory

 How can we split this problem in a set of (almost) 
independent sub-tasks and execute it on a cluster 
of servers? 
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 Suppose that

 The cluster has 3 servers

 The content of the input file is

▪ “Toy example file for Hadoop. Hadoop running 
example.”

 The input file is split in two chunks (number of 
replicas=1)

49
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 The problem can be easily parallelized

1. Each server processes its chunk of data and 
counts the number of times each word appears 
in its chunk

▪ Each server can perform it independently 
Synchronization is not needed in this phase
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2. Each server sends its local (partial) list of pairs 
<word, number of occurrences in its chunk> to a 
server that is in charge of aggregating local 
results and computing the global list/global 
result

▪ The server in charge of computing the global result 
needs to receive all the local (partial) results to compute 
and emit the final list

A simple synchronization operation is needed in this 
phase

 Case 2: File too large to fit in main memory
 Suppose that

 The file size is 100 GB and the number of distinct 
words occurring in it is at most 1,000

 The cluster has 101 servers

 The file is spread acr0ss 100 servers and each of 
these servers contains one (different) chunk of the 
input file
▪ i.e., the file is optimally spread across 100 servers (each 

server contains 1/100 of the file in its local hard drives) 
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 Each server reads 1 GB of data from its local hard 
drive (it reads one chunk from HDFS)
 Few seconds

 Each local list is composed of at most 1,000 pairs 
(because the number of distinct words is 1,000)
 Few MBs

 The maximum amount of data sent on the 
network is 100 x size of local list (number of 
servers x local list size)
 Some MBs

 We can define scalability along two dimensions

 In terms of data:

▪ Given twice the amount of data, the word count algorithm 
takes approximately no more than twice as long to run

▪ Each server processes 2 x data => 2 x execution time to compute local 
list

 In terms of resources

▪ Given twice the number of servers, the word count algorithm 
takes approximately no more than half as long to run

▪ Each server processes ½ x data => ½ x execution time to compute 
local list

60
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 The time needed to send local results to the 
node in charge of computing the final result 
and the computation of the final result are 
considered negligible in this running example 

 Frequently, this assumption is not true

 It depends 

▪ on the complexity of the problem 

▪ on the ability of the developer to limit the amount of 
data sent on the network

61

 Scale “out”, not “up”

 Increase the number of servers and not the resources 
of the already available ones

 Move processing to data

 The network has a limited bandwidth

 Process data sequentially, avoid random access

 Seek operations are expensive 

 Big data applications usually read and analyze all 
records/objects

▪ Random access is useless

62
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 Traditional distributed systems (e.g., HPC) 
move data to computing nodes (servers)
 This approach cannot be used to process TBs of 

data
▪ The network bandwidth is limited

 Hadoop moves code to data
 Code (few KB) is copied and executed on the 

servers that contain the chucks of the data of 
interest

 This approach is based on “data locality”
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 Hadoop/MapReduce is designed for

 Batch processing involving (mostly) full scans of 
the data

 Data-intensive applications

▪ Read and process the whole Web (e.g., PageRank
computation) 

▪ Read and process the whole Social Graph (e.g., 
LinkPrediction, a.k.a. “friend suggest”)

▪ Log analysis (e.g., Network traces, Smart-meter data, ..)

64
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 Hadoop/MapReduce is not the panacea for all 
big data problems

 Hadoop/MapReduce does not feet well

 Iterative problems

 Recursive problems

 Stream data processing

65
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 The MapReduce programming paradigm is 
based on the basic concepts of Functional 
programming

 MapReduce “implements” a subset of 
functional  programming

 The programming model appears quite limited 
and strict

▪ Everything is based on two “functions”, complaint with 
specific interfaces, defined by the developer

67

 Solving complex problems is difficult
 However, there are several important 

problems that can be adapted to MapReduce
 Log analysis

 PageRank computation 

 Social graph analysis

 Sensor data analysis

 Smart-city data analysis

 Network capture analysis

68



2/26/2017

35

 MapReduce is based on two main “building 
blocks”

 Map and Reduce functions

 Map function

 It is applied over each element of an input data set 
and emits a set of (key, value) pairs

 Reduce function

 It is applied over each set of (key, value) pairs 
(emitted by the map function) with the same key and 
emits a set of (key, value) pairs  Final result

69

 Input

 A textual file (i.e., a list of words)

 Problem

 Count the number of times each distinct word 
appears in the file

 Output

 A list of pairs <word, number of occurrences in the 
input file> 

70
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 The input textual file is considered as a list of 
words L

71

72

L = [toy, example, toy, example , hadoop]

[…] denotes a list. (k, v) denotes a key-value pair.
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73

Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[…] denotes a set. (k, v) denotes a key-value pair.

Apply a function 
on each element

74

Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1])

[…] denotes a list. (k, v) denotes a key-value pair.

Group by key
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75

Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[ (toy, 2) , (example, 2), (hadoop, 1) ]

[…] denotes a list. (k, v) denotes a key-value pair.

Apply a function 
on each group

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1])

76

Lm =[(toy, +1), ( example, +1), ( toy, +1), ( example, +1), (hadoop, +1)]

L = [toy, example, toy, example , hadoop]

[ (toy, 2) , (example, 2), (hadoop, 1) ]

Map 
phase

Reduce
phase

Shuffle and 
Sort phase

[…] denotes a list. (k, v) denotes a key-value pair.

(toy, [+1, +1])       (example, [+1, +1])        (hadoop, [+1])
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 The input textual file is considered as a list of 
words L

77

 The input textual file is considered as a list of 
words L

 A key-value pair (w, 1) is emitted for each 
word w in L

 i.e., the map function is m(w) = (w, 1)

 A new list of (key, value) pairs Lm is generated

78
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 The key-value pairs in Lm are aggregated by 
key (i.e., by word in our example)

 One group Gw is generated for each word 

 Each group Gw is a key-list pair (w, [list of values]) 
where [list of values] contains all the values of the 
pairs associated with the word w

▪ i.e., [list of values] is a list of ones in our example 

▪ Given a group Gw, the number of ones is equal to the 
occurrences of word w in the input file 
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 A key-value pair (w, sum Gw.[list of values]) is 
emitted for each group Gw

 i.e., the reduce function is
r(Gw) = (w, sum(Gw.[list of values]) )

 The list of emitted pairs is the result of the 
word count problem

 One pair (word, num. of occurrences) for each 
words in our running example 

80
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 The Map phase can be viewed as a 
transformation over each element of a data set

 This transformation is a function m defined by the 
designer 

 Each application of m happens in isolation

▪ The application of m to each element of a data set can be  
parallelized in a straightforward manner

81

 The Reduce phase can be viewed as an 
aggregate operation

 The aggregate function is a function r defined by 
the designer

 Also the reduce phase can be performed in 
parallel

▪ Each group of key-value pairs with the same key can be 
processed in isolation

82
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 The shuffle and sort phase is always the same

 i.e., group the output of the map phase by key

 It does not need to be defined by the designer

83

 Key-value pair is the basic data structure in 
MapReduce

 Keys and values can be: integers, float, strings, …

 They can also be (almost) arbitrary data structures 
defined by the designer

 Both input and output of a MapReduce
program are lists of key-value pairs

 Note that also the input is a list of key-value pairs

84
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 The design of MapReduce involves

 Imposing the key-value structure on the input and 
output data sets

▪ E.g.: for a collection of Web pages, input keys may be 
URLs and values may be the HTML content

85

 The map and reduce functions are formally 
defined as follows:

 map: (k1, v1) → [(k2, v2)]

 reduce: (k2, [v2]) → [(k3, v3)]

 Since the input data set is a list of key-value 
pairs, the argument of the map function is a 
key-value pair

86[…] denotes a list. (k, v) denotes a key-value pair
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 Map function

 map: (k1, v1) → [(k2, v2)]

 The argument of the map function is a key-
value pair

 Note that the map function emits a list of 
key-value pairs

87[…] denotes a list. (k, v) denotes a key-value pair

 Reduce function

 reduce: (k2, [v2]) → [(k3, v3)]

 Note that the reduce function emits a list of 
key-value pairs

88[…] denotes a list. (k, v) denotes a key-value pair
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 In many applications, the keys of the input 
data set are ignored

 i.e., the map function does not consider the key of 
its key-value pair argument

▪ E.g., word count problem

 Some specific applications exploit also the 
keys of the input data

 E.g., keys can be used to uniquely identify 
records/objects

89

Input file: a textual document
The map function is invoked over each word of the input file

map(key, value):
// key: offset of the word in the file; value: a word of the input 
// document
emit(value, 1)

reduce(key, values):
// key: a word; value: a list of integers
occurrences = 0
for each c in values:

occurrences = occurrences + c

emit(key, occurrences)
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