
2/26/2017

1

Combiner

2

2/26/2017

2

 “Standard” MapReduce applications

 The (key,value) pairs emitted by the Mappers are
sent to the Reducers through the network

 Some “pre-aggregations” could be
performed to limit the amount of network
data

3

 Consider the standard word count problem
 Suppose the input file is split in two Input

Splits

 Hence, two Mappers are instanced (one for each
split)

4

2/26/2017

3

Test Hadoop
combiner.
Hadoop combiner.

Hadoop. Second
Split hadoop file.

(test, 1)
(hadoop, 1)
(combiner, 1)
(hadoop, 1)
(combiner, 1)

Split 0

Split 1
read

read

(hadoop, 1)
(second, 1)
(split, 1)
(hadoop, 1)
(file, 1)

mapper

mapper

Output
Filereducer

send data
on the
network

5

Test Hadoop
combiner.
Hadoop example.

(test, 1)
(hadoop, 1)
(combiner, 1)
(hadoop, 1)
(combiner, 1)

Split 0
read

mapper

Hadoop. Second
Split hadoop file.

Split 1
read

(hadoop, 1)
(second, 1)
(split, 1)
(hadoop, 1)
(file, 1)

mapper send data
on the
network

(test, 1)
(hadoop, 2)
(combiner, 2)

combiner

(hadoop, 2)
(second, 1)
(split, 1)
(file, 1)

combiner

Output
Filereducer

The combiner is locally called on the output
(key, value) pairs of the mapper (works on
data stored in main-memory)

6

2/26/2017

4

 MapReduce applications with combiners
 The (key,value) pairs emitted by the Mappers are

analyzed in main-memory and aggregated by the
Combiners

 The combiner performs some “pre-aggregations”
to limit the amount of network data
▪ Each combiner pre-aggregates the values associated

with the same key emitted by a Mapper

 Works only if the reduce function is
commutative and associative

7

 The Combiner

 Is an instance of the
org.apache.hadoop.mapreduce.Reducer class

▪ There is not a specific combiner-template class

 “Implements” a pre-reduce phase

 Is characterized by the reduce(…) method

▪ Processes (key, [list of values]) pairs and emits (key,
value) pairs

 Runs on the cluster

8

2/26/2017

5

 The Combiner class extends the
org.apache.hadoop.mapreduce.Reducer class
 The org.apache.hadoop.mapreduce.Reducer class

▪ Is a generic type/generic class

▪ With four type parameters: input key type, input value type, output
key type, output value type

 The designer/developer implements the reduce(…)
method
 That is automatically called by the framework for each

(key, [list of values]) pair obtained by aggregating the
output of a mapper

 i.e., Combiners and Reducers extend the same class

9

 The Combiner class is specified by using the
job.setCombinerClass() method in the run
method of the Driver

 i.e., in the job configuration part of the code

10

2/26/2017

6

Personalized Data Types

11

 Personalized Data Types are useful when the
value of a key-value pair is a complex data type

 Personalized Data Types are defined by
implementing the
org.apache.hadoop.io.Writable interface
 The following methods must be implemented

▪ public void readFields(DataInput in)

▪ public void write(DataOutput out)

 To properly format the output of the job usually also
the following method is “redefined”
▪ public String toString()

12

2/26/2017

7

 Suppose to be interested in “complex” values
composed of two parts:

 a counter (int)

 a sum (float)

 An ad-hoc Data Type can be used to
implement this complex data type in Hadoop

13

package it.polito.bigdata.hadoop.combinerexample;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class SumAndCountWritable implements
org.apache.hadoop.io.Writable {
/* Private variables */
private float sum = 0;
private int count = 0;

14

2/26/2017

8

/* Methods to get and set private variables of the class */
public float getSum() {

return sum;
}

public void setSum(float sumValue) {
sum=sumValue;

}

public int getCount() {
return count;

}

public void setCount(int countValue) {
count=countValue;

}

15

/* Methods to serialize and deserialize the contents of the
instances of this class */
@Override /* Serialize the fields of this object to out */
public void write(DataOutput out) throws IOException {

out.writeFloat(sum);
out.writeInt(count);

}

@Override /* Deserialize the fields of this object from in */
public void readFields(DataInput in) throws IOException {

sum=in.readFloat();
count=in.readInt();

}

16

2/26/2017

9

/* Specify how to convert the contents of the instances of this
class to a String
* Useful to specify how to store/write the content of this class
* in a textual file */
public String toString()
{

String formattedString=
new String(“sum="+sum+",count="+count);

return formattedString;
}

}

17

 Personalized Data Types can be used also to
manage complex keys

 In that case the Personalized Data Type must
implement the org.apache.hadoop.io.
WritableComparable interface

 Because keys must be comparables

18

2/26/2017

10

Sharing parameters among Driver, Mappers, and Reducers

19

 The configuration object is used to share the
(basic) configuration of the Hadoop
environment across the driver, the mappers
and the reducers of the application/job

 It stores a list of (property-name, property-
value) pairs

 Personalized (property-name, property-
value) pairs can be specified in the driver
 They can be used to share some parameters of

the application with mappers and reducers

20

2/26/2017

11

 Personalized (property-name, property-
value) pairs are useful to shared small
(constant) properties that are available only
during the execution of the program

 The driver set them

 Mappers and Reducers can access them

▪ Their values cannot be modified by mappers and
reducers

21

 In the driver

 Configuration conf = this.getConf();

▪ Retrieve the configuration object

 conf.set("property-name", "value");

▪ Set personalized properties

 In the Mapper and/or Reducer

 context.getConfiguration().get("property-name")

▪ This method returns a String containing the value of the
specified property

22

