
2/26/2017

1

Combiner
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 “Standard” MapReduce applications

 The (key,value) pairs emitted by the Mappers are 
sent to the Reducers through the network

 Some “pre-aggregations” could be 
performed to limit the amount of network 
data
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 Consider the standard word count problem
 Suppose the input file is split in two Input 

Splits

 Hence, two Mappers are instanced (one for each 
split)
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The combiner is locally called on the output 
(key, value) pairs of the mapper (works on 
data stored in main-memory)

6



2/26/2017

2

 MapReduce applications with combiners
 The (key,value) pairs emitted by the Mappers are 

analyzed in main-memory and aggregated by the 
Combiners

 The combiner performs some “pre-aggregations” 
to limit the amount of network data
▪ Each combiner pre-aggregates the values associated 

with the same key emitted  by a Mapper

 Works only if the reduce function is 
commutative and associative
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 The Combiner

 Is an instance of the 
org.apache.hadoop.mapreduce.Reducer class

▪ There is not a specific combiner-template class

 “Implements” a pre-reduce phase

 Is characterized by the reduce(…) method

▪ Processes (key,  [list of values]) pairs and emits (key, 
value) pairs

 Runs on the cluster
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 The Combiner class extends the 
org.apache.hadoop.mapreduce.Reducer class
 The org.apache.hadoop.mapreduce.Reducer class

▪ Is a generic type/generic class

▪ With four type parameters: input key type, input value type, output 
key type, output value type

 The designer/developer implements the reduce(…) 
method
 That is automatically called by the framework for each 

(key, [list of values]) pair obtained by aggregating the 
output of a mapper

 i.e., Combiners and Reducers extend the same class
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 The Combiner class is specified by using the 
job.setCombinerClass() method in the run 
method of the Driver

 i.e., in the job configuration part of the code 
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Personalized Data Types
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 Personalized Data Types are useful when the 
value of a key-value pair is a complex data type

 Personalized Data Types are defined by 
implementing the 
org.apache.hadoop.io.Writable interface
 The following methods must be implemented
▪ public void readFields(DataInput in)

▪ public void write(DataOutput out)

 To properly format the output of the job usually also 
the following method is “redefined” 
▪ public String toString()
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 Suppose to be interested in “complex” values 
composed of two parts: 

 a counter (int)

 a sum (float)

 An ad-hoc Data Type can be used to 
implement this complex data type in Hadoop
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package it.polito.bigdata.hadoop.combinerexample;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class SumAndCountWritable implements 
org.apache.hadoop.io.Writable {
/* Private variables */
private float sum = 0;
private int count = 0;
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/* Methods to get and set private variables of the class */
public float getSum() {

return sum;
}

public void setSum(float sumValue) {
sum=sumValue;

}

public int getCount() {
return count;

}

public void setCount(int countValue) {
count=countValue;

}
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/* Methods to serialize and deserialize the contents of the 
instances of this class */
@Override /* Serialize the fields of this object to out */
public void write(DataOutput out) throws IOException {

out.writeFloat(sum);
out.writeInt(count);

}

@Override /* Deserialize the fields of this object from in */
public void readFields(DataInput in) throws IOException {

sum=in.readFloat();
count=in.readInt();

}
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/* Specify how to convert the contents of the instances of this 
class to a String
* Useful to specify how to store/write the content of this class
* in a textual file */
public String toString()
{

String formattedString=
new String(“sum="+sum+",count="+count);

return formattedString;
}

}
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 Personalized Data Types can be used also to 
manage complex keys

 In that case the Personalized Data Type must 
implement  the org.apache.hadoop.io. 
WritableComparable interface

 Because keys must be comparables
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Sharing parameters among Driver, Mappers, and Reducers

19

 The  configuration object is used to share the 
(basic) configuration of the Hadoop
environment across the driver, the mappers
and the reducers of the application/job

 It stores a list of (property-name, property-
value) pairs

 Personalized (property-name, property-
value) pairs  can be specified in the driver
 They can be used to share some parameters of 

the application with mappers and reducers
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 Personalized (property-name, property-
value) pairs are useful to shared small 
(constant) properties that are available only 
during the execution of the program

 The driver set them

 Mappers and Reducers can access them

▪ Their values cannot be modified by mappers and 
reducers 
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 In the driver

 Configuration conf = this.getConf();

▪ Retrieve the configuration object

 conf.set("property-name", "value");

▪ Set personalized properties 

 In the Mapper and/or Reducer

 context.getConfiguration().get("property-name")

▪ This method returns a String containing the value of the 
specified property
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