
2/26/2017

1

Combiner

2

 “Standard” MapReduce applications

 The (key,value) pairs emitted by the Mappers are
sent to the Reducers through the network

 Some “pre-aggregations” could be
performed to limit the amount of network
data

3

 Consider the standard word count problem
 Suppose the input file is split in two Input

Splits

 Hence, two Mappers are instanced (one for each
split)

4

Test Hadoop
combiner.
Hadoop combiner.

Hadoop. Second
Split hadoop file.

(test, 1)
(hadoop, 1)
(combiner, 1)
(hadoop, 1)
(combiner, 1)

Split 0

Split 1
read

read

(hadoop, 1)
(second, 1)
(split, 1)
(hadoop, 1)
(file, 1)

mapper

mapper

Output
Filereducer

send data
on the
network

5

Test Hadoop
combiner.
Hadoop example.

(test, 1)
(hadoop, 1)
(combiner, 1)
(hadoop, 1)
(combiner, 1)

Split 0
read

mapper

Hadoop. Second
Split hadoop file.

Split 1
read

(hadoop, 1)
(second, 1)
(split, 1)
(hadoop, 1)
(file, 1)

mapper send data
on the
network

(test, 1)
(hadoop, 2)
(combiner, 2)

combiner

(hadoop, 2)
(second, 1)
(split, 1)
(file, 1)

combiner

Output
Filereducer

The combiner is locally called on the output
(key, value) pairs of the mapper (works on
data stored in main-memory)

6

2/26/2017

2

 MapReduce applications with combiners
 The (key,value) pairs emitted by the Mappers are

analyzed in main-memory and aggregated by the
Combiners

 The combiner performs some “pre-aggregations”
to limit the amount of network data
▪ Each combiner pre-aggregates the values associated

with the same key emitted by a Mapper

 Works only if the reduce function is
commutative and associative

7

 The Combiner

 Is an instance of the
org.apache.hadoop.mapreduce.Reducer class

▪ There is not a specific combiner-template class

 “Implements” a pre-reduce phase

 Is characterized by the reduce(…) method

▪ Processes (key, [list of values]) pairs and emits (key,
value) pairs

 Runs on the cluster

8

 The Combiner class extends the
org.apache.hadoop.mapreduce.Reducer class
 The org.apache.hadoop.mapreduce.Reducer class

▪ Is a generic type/generic class

▪ With four type parameters: input key type, input value type, output
key type, output value type

 The designer/developer implements the reduce(…)
method
 That is automatically called by the framework for each

(key, [list of values]) pair obtained by aggregating the
output of a mapper

 i.e., Combiners and Reducers extend the same class

9

 The Combiner class is specified by using the
job.setCombinerClass() method in the run
method of the Driver

 i.e., in the job configuration part of the code

10

Personalized Data Types

11

 Personalized Data Types are useful when the
value of a key-value pair is a complex data type

 Personalized Data Types are defined by
implementing the
org.apache.hadoop.io.Writable interface
 The following methods must be implemented
▪ public void readFields(DataInput in)

▪ public void write(DataOutput out)

 To properly format the output of the job usually also
the following method is “redefined”
▪ public String toString()

12

2/26/2017

3

 Suppose to be interested in “complex” values
composed of two parts:

 a counter (int)

 a sum (float)

 An ad-hoc Data Type can be used to
implement this complex data type in Hadoop

13

package it.polito.bigdata.hadoop.combinerexample;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class SumAndCountWritable implements
org.apache.hadoop.io.Writable {
/* Private variables */
private float sum = 0;
private int count = 0;

14

/* Methods to get and set private variables of the class */
public float getSum() {

return sum;
}

public void setSum(float sumValue) {
sum=sumValue;

}

public int getCount() {
return count;

}

public void setCount(int countValue) {
count=countValue;

}

15

/* Methods to serialize and deserialize the contents of the
instances of this class */
@Override /* Serialize the fields of this object to out */
public void write(DataOutput out) throws IOException {

out.writeFloat(sum);
out.writeInt(count);

}

@Override /* Deserialize the fields of this object from in */
public void readFields(DataInput in) throws IOException {

sum=in.readFloat();
count=in.readInt();

}

16

/* Specify how to convert the contents of the instances of this
class to a String
* Useful to specify how to store/write the content of this class
* in a textual file */
public String toString()
{

String formattedString=
new String(“sum="+sum+",count="+count);

return formattedString;
}

}

17

 Personalized Data Types can be used also to
manage complex keys

 In that case the Personalized Data Type must
implement the org.apache.hadoop.io.
WritableComparable interface

 Because keys must be comparables

18

2/26/2017

4

Sharing parameters among Driver, Mappers, and Reducers

19

 The configuration object is used to share the
(basic) configuration of the Hadoop
environment across the driver, the mappers
and the reducers of the application/job

 It stores a list of (property-name, property-
value) pairs

 Personalized (property-name, property-
value) pairs can be specified in the driver
 They can be used to share some parameters of

the application with mappers and reducers

20

 Personalized (property-name, property-
value) pairs are useful to shared small
(constant) properties that are available only
during the execution of the program

 The driver set them

 Mappers and Reducers can access them

▪ Their values cannot be modified by mappers and
reducers

21

 In the driver

 Configuration conf = this.getConf();

▪ Retrieve the configuration object

 conf.set("property-name", "value");

▪ Set personalized properties

 In the Mapper and/or Reducer

 context.getConfiguration().get("property-name")

▪ This method returns a String containing the value of the
specified property

22

