
2/26/2017

1

2

2/26/2017

2

 In some applications data are read from two
or more datasets
 The datasets could have different formats

 Hadoop allows reading data from multiple
inputs (multiple datasets) with different
formats
 One different mapper for each input dataset must

be specified

 However, the key-value pairs emitted by the
mappers must be consistent

3

 Example of a use case

 Input data collected from different sensors

 All sensors measure the same “measure”

 But sensors developed by different vendors use a
different data format to store the gathered
data/measurements

4

2/26/2017

3

 In the driver

 Use the addInputPath method of the
MultipleInputs class multiple times to

▪ Add one input path at a time

▪ Specify the input format class

▪ Specify the Mapper class associated with the specified
input path

5

 E.g.,
MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, Mapper1.class);
MultipleInputs.addInputPath(job, new Path(args[2]),
TextInputFormat.class, Mapper2.class);

 Specify two input paths (args[1] and args[2])
 The data of both paths are read by using the

TextInputFormat class
 The Mapper1 class is the class used to manage the

input key-value pairs associated with the first path
 The Mapper2 class is used to manage the input key-

value pairs associated with the second path

6

2/26/2017

4

7

 In some applications it could be useful to store the
output key-value pairs of a MapReduce application in
different files
 Each file contains a specific subset of the emitted key-

value pairs (based on some rules)
▪ Usually this approach is useful for splitting and filtering operations

 Each file name has a prefix that is used to specify the
“content” of the file

 All the files are stored in one single output directory
 i.e., there are no multiple output directories, but only

multiple output files

8

2/26/2017

5

 Hadoop allows specifying the prefix of the
output files
 The standard prefix is “part-” (see the content of

the output directory of some of the previous
applications)

 The MultipleOutputs class is used to specify the
prefixes of the output files
▪ One different prefix for each “type” of output file

▪ There will be one output file of each type for each
reducer (mapper the job a map-only job)

9

 Use the method MultipleOutputs.addNamedOutput
multiple times in the Driver to specify the prefixes of
the output files

 The method has 4 parameter
 The job object

 The “name/prefix” of MultipleOutputs

 The OutputFormat class

 The key output data type class

 The value output data type class
 Call this method one time for each “output file type”

10

2/26/2017

6

 E.g.,
MultipleOutputs.addNamedOutput(job,
"hightemp", TextOutputFormat.class, Text.class,
NullWritable.class);
MultipleOutputs.addNamedOutput(job,
"normaltemp", TextOutputFormat.class,
Text.class, NullWritable.class);

 This example defines two types of output files
 The first type of output files while have the prefix

“hightemp”
 The second type of output files while have the prefix

“normaltemp”

11

 Define a private MultipleOutputs variable in the
mapper if the job is a map-only job (in the
reducer otherwise)
 E.g.,

▪ private MultipleOutputs<Text, NullWritable> mos = null;

 Create an instance of the MultipleOutputs class
in the setup method of the mapper (or in the
reducer)
 E.g.,

▪ mos = new MultipleOutputs<Text, NullWritable>(context);

12

2/26/2017

7

 Use the write method of the MultipleOutputs
object in the map method (or in the reduce
method) to write the key-value pairs in the
file of interest
 E.g.,
▪ mos.write("hightemp", value, NullWritable.get());
▪ This example writes the current key-value pair in a file with the

prefix “hightemp-”

▪ mos.write(“normaltemp", value, NullWritable.get());
▪ This example writes the current key-value pair in a file with the

prefix “normaltemp-”

13

 Close the MultipleOutputs object in the
cleanup method of the mapper (or of the
reducer)

 E.g.,

▪ mos.close();

14

