2/26/2017

Big data: architectures and
data analytics

-

Multiple inputs




2/26/2017

Multiple inputs

In some applications data are read from two
or more datasets

The datasets could have different formats
Hadoop allows reading data from multiple
inputs (multiple datasets) with different
formats

One different mapper for each input dataset must

be specified

However, the key-value pairs emitted by the

mappers must be consistent

Multiple inputs

Example of a use case
Input data collected from different sensors
All sensors measure the same "measure”

But sensors developed by different vendors use a
different data format to store the gathered
data/measurements




2/26/2017

Multiple inputs

In the driver

Use the method of the
class multiple times to
Add one input path at a time
Specify the input format class

Specify the Mapper class associated with the specified
input path

Multiple inputs

E.g.,
MultipleInputs.addinputPath(job, new Path(args[i]),
TextInputFormat.class, Mapperzi.class);
Multiplelnputs.addinputPath(job, new Path(args[2]),
TextInputFormat.class, Mapper2.class);

Specify two input paths (args[1] and args[2])
The data of both paths are read by using the
TextInputFormat class

The Mapperi class is the class used to manage the
input key-value pairs associated with the first path

The Mapper2 class is used to manage the input key-
value pairs associated with the second path




2/26/2017

Multiple outputs

Multiple outputs

In some applications it could be useful to store the
output key-value pairs of a MapReduce application in
different files
Each file contains a specific subset of the emitted key-
value pairs (based on some rules)

Usually this approach is useful for splitting and filtering operations
Each file name has a prefix that is used to specify the
“content” of the file

All the files are stored in one single output directory
i.e., there are no multiple output directories, but only
multiple output files




2/26/2017

Multiple outputs

Hadoop allows specifying the prefix of the
output files

The standard prefix is “part-” (see the content of
the output directory of some of the previous
applications)
The class is used to specify the
prefixes of the output files

One different prefix for each “type” of output file

There will be one output file of each type for each
reducer (mapper the job a map-only job)

Multiple outputs - Driver

Use the method
multiple times in the Driver to specify the prefixes of
the output files
The method has 4 parameter
The job object
The “name/prefix” of MultipleOutputs
The OutputFormat class
The key output data type class

The value output data type class
Call this method one time for each “output file type”

10




Multiple outputs - Driver

E.g.,

MultipleOutputs.addNamedOutput(job,

"hightemp", TextOutputFormat.class, Text.class,

NullWritable.class);

MultipleOutputs.addNamedOutput(job,

"normaltemp", TextOutputFormat.class,

Text.class, NullWritable.class);

This example defines two types of output files
The first type of output files while have the prefix
“hightemp”

The second type of output files while have the prefix
“normaltemp”

11

Multiple outputs — Map-only

example

Define a private MultipleOutputs variable in the
mapper if the job is a map-only job (in the
reducer otherwise)

E.g.,

private MultipleOutputs<Text, NullWritable> mos = null;

Create an instance of the MultipleOutputs class
in the setup method of the mapper (or in the
reducer)

E.g.,

mos = new MultipleOutputs<Text, NullWritable>(context);

2/26/2017



2/26/2017

Multiple outputs — Map-only

example

Use the write method of the MultipleOutputs
object in the map method (or in the reduce
method) to write the key-value pairs in the
file of interest

E.g.,
mos.write("hightemp", value, NullWritable.get());
This example writes the current key-value pair in a file with the
prefix “hightemp-"
mos.write(“*normaltemp", value, NullWritable.get());
This example writes the current key-value pair in a file with the
prefix “normaltemp-”

Multiple outputs — Map-only

example

Close the MultipleOutputs object in the
cleanup method of the mapper (or of the
reducer)

E.g.,

mos.close();




