
2/26/2017

1

2

2/26/2017

2

 In some applications data are read from two
or more datasets
 The datasets could have different formats

 Hadoop allows reading data from multiple
inputs (multiple datasets) with different
formats
 One different mapper for each input dataset must

be specified

 However, the key-value pairs emitted by the
mappers must be consistent

3

 Example of a use case

 Input data collected from different sensors

 All sensors measure the same “measure”

 But sensors developed by different vendors use a
different data format to store the gathered
data/measurements

4

2/26/2017

3

 In the driver

 Use the addInputPath method of the
MultipleInputs class multiple times to

▪ Add one input path at a time

▪ Specify the input format class

▪ Specify the Mapper class associated with the specified
input path

5

 E.g.,
MultipleInputs.addInputPath(job, new Path(args[1]),
TextInputFormat.class, Mapper1.class);
MultipleInputs.addInputPath(job, new Path(args[2]),
TextInputFormat.class, Mapper2.class);

 Specify two input paths (args[1] and args[2])
 The data of both paths are read by using the

TextInputFormat class
 The Mapper1 class is the class used to manage the

input key-value pairs associated with the first path
 The Mapper2 class is used to manage the input key-

value pairs associated with the second path

6

2/26/2017

4

7

 In some applications it could be useful to store the
output key-value pairs of a MapReduce application in
different files
 Each file contains a specific subset of the emitted key-

value pairs (based on some rules)
▪ Usually this approach is useful for splitting and filtering operations

 Each file name has a prefix that is used to specify the
“content” of the file

 All the files are stored in one single output directory
 i.e., there are no multiple output directories, but only

multiple output files

8

2/26/2017

5

 Hadoop allows specifying the prefix of the
output files
 The standard prefix is “part-” (see the content of

the output directory of some of the previous
applications)

 The MultipleOutputs class is used to specify the
prefixes of the output files
▪ One different prefix for each “type” of output file

▪ There will be one output file of each type for each
reducer (mapper the job a map-only job)

9

 Use the method MultipleOutputs.addNamedOutput
multiple times in the Driver to specify the prefixes of
the output files

 The method has 4 parameter
 The job object

 The “name/prefix” of MultipleOutputs

 The OutputFormat class

 The key output data type class

 The value output data type class
 Call this method one time for each “output file type”

10

2/26/2017

6

 E.g.,
MultipleOutputs.addNamedOutput(job,
"hightemp", TextOutputFormat.class, Text.class,
NullWritable.class);
MultipleOutputs.addNamedOutput(job,
"normaltemp", TextOutputFormat.class,
Text.class, NullWritable.class);

 This example defines two types of output files
 The first type of output files while have the prefix

“hightemp”
 The second type of output files while have the prefix

“normaltemp”

11

 Define a private MultipleOutputs variable in the
mapper if the job is a map-only job (in the
reducer otherwise)
 E.g.,

▪ private MultipleOutputs<Text, NullWritable> mos = null;

 Create an instance of the MultipleOutputs class
in the setup method of the mapper (or in the
reducer)
 E.g.,

▪ mos = new MultipleOutputs<Text, NullWritable>(context);

12

2/26/2017

7

 Use the write method of the MultipleOutputs
object in the map method (or in the reduce
method) to write the key-value pairs in the
file of interest
 E.g.,
▪ mos.write("hightemp", value, NullWritable.get());
▪ This example writes the current key-value pair in a file with the

prefix “hightemp-”

▪ mos.write(“normaltemp", value, NullWritable.get());
▪ This example writes the current key-value pair in a file with the

prefix “normaltemp-”

13

 Close the MultipleOutputs object in the
cleanup method of the mapper (or of the
reducer)

 E.g.,

▪ mos.close();

14

