
2/26/2017

1

2

2/26/2017

2

 Some applications need to share and cache
(small) read-only files to perform efficiently their
task

 These files should be accessible by all nodes of
the cluster in an efficient way
 Hence a copy of the shared/cached files should be

available in all nodes used to run the application
 DistributedCache is a facility provided by the

Map-Reduce framework to cache files
 E.g., text, archives, jars needed by applications.

3

 In the Driver of the application, the set of
shared/cached files are specified
 By using the job.addCacheFile(path) method

 During the initialization of the job, Hadoop
creates a “local copy” of the shared/cached files
in all nodes which are used to execute some
tasks (mappers or reducers) of the job (i.e., of
the running application)

 The shared/cache file is read by the mapper (or
the reducer), usually in its setup method
 Since the shared/cached file is available locally in the

node, its content can be read efficiently

4

2/26/2017

3

 The efficiency of the distributed cache depends
on the number of multiple mappers (or reducers)
running on the same node
 For each node a local copy of the file is copied during

the initialization of the job
 The local copy of the file is used by all mappers

(reducers)
 Without a distributed approach, each mapper

(reducer) reads the shared file from HDFS
 Hence, more time is needed because reading data

from HDFS is more inefficient than reading data from
the local file system of the node

5

Structure

6

2/26/2017

4

public int run(String[] args) throws Exception {

…..

// Add the shared/cached HDFS file in the
// distributed cache
job.addCacheFile(new Path("hdfs
path").toUri());

……
}

7

protected void setup(Context context) throws IOException,

InterruptedException {

………
String line;

// Retrieve the paths of the local copies of
// the distributed files
Path[] PathsCachedFiles = context.getLocalCacheFiles();

8

2/26/2017

5

// Read the content of the cached file and process it
// in this example the content of the first shared file is opened
BufferedReader file = new BufferedReader(new FileReader(new

File(PathsCachedFiles[0].toString())));

// Iterate over the lines of the file
while ((line = file.readLine()) != null) {

// process the current line
…..

}

file.close();
}

9

