

2

 Some applications need to share and cache
(small) read-only files to perform efficiently their
task

 These files should be accessible by all nodes of
the cluster in an efficient way
 Hence a copy of the shared/cached files should be

available in all nodes used to run the application
 DistributedCache is a facility provided by the

Map-Reduce framework to cache files
 E.g., text, archives, jars needed by applications.

3

 In the Driver of the application, the set of
shared/cached files are specified
 By using the job.addCacheFile(path) method

 During the initialization of the job, Hadoop
creates a “local copy” of the shared/cached files
in all nodes which are used to execute some
tasks (mappers or reducers) of the job (i.e., of
the running application)

 The shared/cache file is read by the mapper (or
the reducer), usually in its setup method
 Since the shared/cached file is available locally in the

node, its content can be read efficiently

4

 The efficiency of the distributed cache depends
on the number of multiple mappers (or reducers)
running on the same node
 For each node a local copy of the file is copied during

the initialization of the job
 The local copy of the file is used by all mappers

(reducers)
 Without a distributed approach, each mapper

(reducer) reads the shared file from HDFS
 Hence, more time is needed because reading data

from HDFS is more inefficient than reading data from
the local file system of the node

5

Structure

6

public int run(String[] args) throws Exception {

…..

// Add the shared/cached HDFS file in the
// distributed cache
job.addCacheFile(new Path("hdfs
path").toUri());

……
}

7

protected void setup(Context context) throws IOException,

InterruptedException {

………
String line;

// Retrieve the paths of the local copies of
// the distributed files
Path[] PathsCachedFiles = context.getLocalCacheFiles();

8

// Read the content of the cached file and process it
// in this example the content of the first shared file is opened
BufferedReader file = new BufferedReader(new FileReader(new

File(PathsCachedFiles[0].toString())));

// Iterate over the lines of the file
while ((line = file.readLine()) != null) {

// process the current line
…..

}

file.close();
}

9

