
08/04/2018 

1 



08/04/2018 

2 

 Apache Spark™ is a fast and general-purpose 
engine for large-scale data processing 

 Spark aims at achieving the following goals in 
the Big data context 

 Generality: diverse workloads, operators, job sizes 

 Low latency: sub-second 

 Fault tolerance: faults are the norm, not the 
exception 

 Simplicity: often comes from generality 

 Originally developed at the University of 
California - Berkeley's AMPLab 



08/04/2018 

3 

 Iterative jobs, with MapReduce, involve a  lot 
of disk I/O for each iteration and stage 

Mappers Reducers Mappers Reducers 

Stage 1 Stage 2 



08/04/2018 

4 

 Disk I/O is very slow (even if it is local I/O) 

Mappers Reducers Mappers Reducers 

Stage 1 Stage 2 

 Motivation 
 Using MapReduce for complex iterative jobs or 

multiple jobs on the same data involves lots of 
disk I/O 

 Opportunity 
 The cost of main memory decreased 

▪ Hence, large main memories are available in each server 

 Solution 
 Keep more data in main memory 

▪ Basic idea of Spark 

 
 



08/04/2018 

5 

 MapReduce: Iterative job 

iteration 1 iteration 2 . . . 

Input 

HDFS 
read 

HDFS HDFS 

write read 

HDFS 

write 

 Spark: Iterative job 
 
 
 

 Data are shared between the iterations by 
using the main memory 

 Or at least part of them 

 10 to 100 times faster than disk 

iteration 1 iteration 2 . . . 

Input 

HDFS 

read 



08/04/2018 

6 

 MapReduce: Multiple analyses of the same 
data 

Input 

query 1 

query 2 

query 3 

result 1 

result 2 

result 3 

. . . 

HDFS 

read 

HDFS 

read 

HDFS 

read 

HDFS 

read 

 Spark: Multiple analyses of the same data 
 
 
 
 
 

 Data are read only once from HDFS and stored 
in main memory 
 Split of the data across the main memory of each 

server  

 

Input 

query 1 

query 2 

query 3 

result 1 

result 2 

result 3 

HDFS  

read 

Distributed  

memory 
. . . 



08/04/2018 

7 

 Data are represented as Resilient Distributed  
Datasets (RDDs) 

 Partitioned/Distributed collections of objects 
spread across the nodes of a clusters 

 Stored in main memory (when it is possible) or on 
local disk 

 Spark programs are written in terms of 
operations on resilient distributed  data sets 

 RDDs are built and manipulated through a set 
of parallel  

 Transformations  

▪ map, filter, join, … 

 Actions 

▪ count, collect, save, … 

 RDDs are automatically rebuilt on machine  
failure 
 



08/04/2018 

8 

 Provides a programming abstraction (based 
on RDDs) and transparent mechanisms to 
execute code in parallel on RDDs 

 Hides complexities of fault-tolerance and slow 
machines 

 Manages scheduling and synchronization of the 
jobs 

Hadoop   
Map Reduce 

Spark 

Storage Disk only In-memory or on disk 

Operations Map and  
Reduce 

Map, Reduce, Join,  
Sample, etc… 

Execution model Batch Batch, interactive,  
streaming 

Programming  
environments 

Java Scala, Java,  Python,  and R 



08/04/2018 

9 

 Lower overhead for starting jobs 
 Less expensive shuffles 

 

 Two iterative Machine Learning  algorithms: 

 K-means Clustering 

 

 

 Logistic Regression 

 

 

4.1 

121 

0 50 100 

Hadoop MR  

Spark 

150 sec 

0.96 

80 

0 20 40 60 80 

Hadoop MR  

Spark 

100 sec 



08/04/2018 

10 

Daytona Gray 

100 TB  sort 

benchmark 

record  (tied 

for 1st  place) 



08/04/2018 

11 

Spark SQL 
structured 

data 

Spark  
Streaming 
real-time 

MLlib  
(Machine 

learning and 
Data 

mining) 

GraphX 
(Graph 

processing) 

Spark  Core 

Standalone Spark 
Scheduler 

YARN Scheduler 
(The same used by 

Hadoop) 
Mesos 

 Spark is based on a basic component (the 
Spark Core component) that is exploited by 
all the high-level data analytics components 

 This solution provides a more uniform and 
efficient solution with respect to Hadoop where 
many non-integrated tools are available 

 When the efficiency of the core component is 
increased also the efficiency  of the other 
high-level components increases  
 
 

22 



08/04/2018 

12 

 Spark Core 

 Contains the basic functionalities of Spark 
exploited by all components 

▪ Task scheduling 

▪ Memory management 

▪ Fault recovery 

▪ … 

 Provides the APIs that are used to create RDDs 
and applies transformations and actions on them 

 
 
 

23 

 Spark SQL structured data 
 This component is used to interact with 

structured datasets by means of the SQL 
language 

 It supports also  
▪ Hive Query Language (HQL) 

 It interacts with many data sources 
▪ Hive Tables 

▪ Parquet 

▪ JSON 

 
 
 

24 



08/04/2018 

13 

 Spark Streaming real-time 

 It is used to process live streams of data in real-
time 

 The APIs of the Streaming real-time components 
operated on RDDs and are similar to the ones 
used to process standard RDDs associated with 
“static” data sources 

 

 
 
 

25 

 MLlib  

 It is a machine learning/data mining library 

 It can be used to apply the parallel versions of 
some machine learning/data mining algorithms 

▪ Data preprocessing and dimensional reduction 

▪ Classification algorithms 

▪ Clustering algorithms 

▪ Itemset mining 

▪ …. 

 
 26 



08/04/2018 

14 

 GraphX 

 A graph processing library 

 Provides many algorithms for manipulating 
graphs 

▪ Subgraph searching 

▪ PageRank 

▪ …. 

 

 
 
 

27 

 Spark can exploit many schedulers to execute 
its applications 

 Hadoop YARN 

▪ Standard scheduler of Hadoop 

 Mesos cluster 

▪ Another popular scheduler 

  Standalone Spark Scheduler 

▪ A simple cluster scheduler included in Spark 

 

 
28 


