
2/26/2017

1

 Spark computes the content of an RDD each
time an action is invoked on it

 If the same RDD is used multiple times in an
application, Spark recomputes its content
every time an action is invoked on the RDD,
or on one of its “descendants”

 This is expensive, especially for iterative
applications

 We can ask Spark to persist/cache RDDs

4

 When you ask Spark to persist/cache an RDD, each
node stores the content of any partitions of it that it
computes in memory and reuses them in other
actions on that dataset (or datasets derived from it)
 The first time the content of a persistent/cached RDD is

computed in an action, it will be kept in memory on the
nodes

 The next actions on the same RDD will read its content
from memory
▪ I.e., Spark persists/caches the content of the RDD across operations

▪ This allows future actions to be much faster (often by more than
10x

5

 Spark supports several storage levels

 The storage level is used to specify if the content
of the RDD is stored

▪ In the main memory of the nodes

▪ On the local disks of the nodes

▪ Partially in the main memory and partially on disk

6

2/26/2017

2

7

Storage Level Meaning

MEMORY_ONLY Store RDD as deserialized Java objects in the JVM. If the
RDD does not fit in memory, some partitions will not be
cached and will be recomputed on the fly each time
they're needed. This is the default level.

MEMORY_AND_DISK Store RDD as deserialized Java objects in the JVM. If the
RDD does not fit in memory, store the partitions that
don't fit on (local) disk, and read them from there when
they're needed.

MEMORY_ONLY_SER Store RDD as serialized Java objects (one byte array per
partition). This is generally more space-efficient than
deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

MEMORY_AND_DISK_SER Similar to MEMORY_ONLY_SER, but spill partitions that
don't fit in memory to disk instead of recomputing them
on the fly each time they're needed.

http://spark.apache.org/docs/1.5.0/programming-guide.html#rdd-persistence

 Storage levels supported by Spark

8

Storage Level Meaning

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,
MEMORY_AND_DISK_2,
etc.

Same as the levels above, but replicate each partition on
two cluster nodes.

http://spark.apache.org/docs/1.5.0/programming-guide.html#rdd-persistence

 Storage levels supported by Spark

9

Storage Level Meaning

OFF_HEAP (experimental) Store RDD in serialized format in Tachyon. Compared to
MEMORY_ONLY_SER, OFF_HEAP reduces garbage
collection overhead and allows executors to be smaller
and to share a pool of memory, making it attractive in
environments with large heaps or multiple concurrent
applications. Furthermore, as the RDDs reside in Tachyon,
the crash of an executor does not lead to losing the in-
memory cache. In this mode, the memory in Tachyon is
discardable. Thus, Tachyon does not attempt to
reconstruct a block that it evicts from memory. If you plan
to use Tachyon as the off heap store, Spark is compatible
with Tachyon out-of-the-box. Please refer to this page for
the suggested version pairings.

http://spark.apache.org/docs/1.5.0/programming-guide.html#rdd-persistence

 You can mark an RDD to be persisted by using the
JavaRDD<T> persist(StorageLevel level) method of
the JavaRDD<T> class

 The parameter of persist can assume the following
values
 StorageLevel.MEMORY_ONLY()
 StorageLevel.MEMORY_AND_DISK()
 StorageLevel.MEMORY_ONLY_SER()
 StorageLevel.MEMORY_AND_DISK_SER()
 StorageLevel.DISK_ONLY()
 StorageLevel.NONE()
 StorageLevel.OFF_HEAP()

10

 StorageLevel.MEMORY_ONLY_2()

 StorageLevel.MEMORY_AND_DISK_2()

 StorageLevel.MEMORY_ONLY_SER_2()

 StorageLevel.MEMORY_AND_DISK_SER_2()

 The storage level *_2() replicate each
partition on two cluster nodes

 If one node fails, the other one can be used to
perform the actions on the RDD without
recomputing the content of the RDD

11

 You can cache an RDD by using the
JavaRDD<T> cache() method of the
JavaRDD<T> class
 It corresponds to persist the RDD with the storage

level `MEMORY_ONLY`

 i.e., it is equivalent to
inRDD.persist(StorageLevel.MEMORY_ONLY())

 Note that both persist and cache return a
new JavaRDD
 Because RDDs are immutable

12

2/26/2017

3

 The use of the persist/cache mechanism on
an RDD provides an advantage if the same
RDD is used multiple times

 i.e., multiples actions are applied on it or on its
descendants

13

 The storage levels that store RDDs on disk
are useful if and only if

 The “size” of the RDD is significantly smaller than
the size of the input dataset

 Or the functions that are used to compute the
content of the RDD are expensive

 Otherwise, recomputing a partition may be as fast
as reading it from disk

14

 Spark automatically monitors cache usage on
each node and drops out old data partitions
in a least-recently-used (LRU) fashion

 You can manually remove an RDD from the
cache by using the JavaRDD<T> unpersist()
method of the JavaRDD<T> class

15

 Create an RDD from a textual file containing
a list of words

 One word for each line

 Print on the standard output

 The number of lines of the input file

 The number of distinct words

16

// Read the content of a textual file
// and cache the associated RDD
JavaRDD<String> inputRDD = sc.textFile("words.txt").cache();

System.out.println("Number of words: "+inputRDD.count());
System.out.println("Number of distinct words: "

+inRDD.distinct().count());

17

// Read the content of a textual file
// and cache the associated RDD
JavaRDD<String> inputRDD = sc.textFile("words.txt").cache();

System.out.println("Number of words: "+inputRDD.count());
System.out.println("Number of distinct words: "

+inRDD.distinct().count());

18

The cache method is invoked.
Hence, inputRDD is a “cached” RDD

2/26/2017

4

// Read the content of a textual file
// and cache the associated RDD
JavaRDD<String> inputRDD = sc.textFile("words.txt").cache();

System.out.println("Number of words: "+inputRDD.count());
System.out.println("Number of distinct words: "

+inRDD.distinct().count());

19

This is the first time an action is invoked
on the inputRDD RDD.
The content of the RDD is computed by
reading the lines of the words.txt file and
the result of the count action is returned.
The content of inputRDD is also stored in
the main memory of the nodes of the
cluster.

// Read the content of a textual file
// and cache the associated RDD
JavaRDD<String> inputRDD = sc.textFile("words.txt").cache();

System.out.println("Number of words: "+inputRDD.count());
System.out.println("Number of distinct words: "

+inputRDD.distinct().count());

20

The content of inputRDD is in the main
memory if the nodes of the cluster.
Hence the computation of distinct() is
performed by reading the data from the
main memory and not from the input
(HDFS) file words.txt

 When a “function” passed to a Spark
operation is executed on a remote cluster
node, it works on separate copies of all the
variables used in the function

 These variables are copied to each node of the
cluster, and no updates to the variables on the
nodes are propagated back to the driver program

22

 Spark provides a type of shared variables
called accumulators

 Accumulators are shared variables that are
only “added” to through an associative
operation and can therefore be efficiently
supported in parallel

 They can be used to implement counters (as
in MapReduce) or sums

23

 Accumulators are usually used to compute
simple statistics while performing some other
actions on the input RDD

 The avoid using actions like reduce() to compute
simple statistics (e.g., count the number of lines
with some characteristics)

24

2/26/2017

5

 The driver defines and initializes the accumulator
 The code executed in the worker nodes increases the

value of the accumulator
 I.e., the code in the “functions” associated with the

transformations
 The final value of the accumulator is returned to the

driver node
 Only the driver node can access the final value of the

accumulator

 The worker nodes cannot access the value of the
accumulator
▪ They can only add values to it

25

 Pay attention that the value of the
accumulator is increased in the call method of
the functions associated with
transformations

 Since transformations are lazily evaluated,
the value of the accumulator is computed
only when an action is executed on the RDD
on which the transformations increasing the
accumulator are applied

26

 Spark natively supports accumulators of
numeric types

 But programmers can add support for new
data types

27

 Accumulators are objects of type
org.apache.spark.Accumulator
 An Integer accumulator can be defined and initialized

in the driver by using the Accumulator<Integer>
accumulator(int value) method of the
JavaSparkContext class
▪ value is the initial value of the accumulator

 A Double accumulator can be defined and initialized
in the driver by using the Accumulator<Double>
accumulator(double value) method of the
JavaSparkContext class
▪ value is the initial value of the accumulator

28

 The value of an accumulator can be “increased” by
using the void add(T value) method of the
Accumulator<T> class

▪ Add “value” to the current value of the accumulator

 The final value of an accumulator can be retrieved
in the driver program by using the T value()
method of the Accumulator<T> class

29

 Create an RDD from a textual file containing
a list of email addresses

 One email for each line

 Select the lines containing a valid email and
store them in an HDFS file

 In this example, an email is considered as valid if it
contains the @ symbol

 Print also, on the standard output, the
number of invalid emails

30

2/26/2017

6

// Read the content of the input textual file
// This class is used to filter the input emails
class ValidEmail implements Function<String, Boolean> {

// Call method. It returns true if the input String
// contains the symbol @
public Boolean call(String line) {

// If the line contains an invalid email increase
// the accumulator invalidEmails
if (line.contains("@")==false) {

invalidEmails.add(1);
}

return line.contains("@");
}

}

31

// Read the content of the input textual file
// This class is used to filter the input emails
class ValidEmail implements Function<String, Boolean> {

// Call method. It returns true if the input String
// contains the symbol @
public Boolean call(String line) {

// If the line contains an invalid email increase
// the accumulator invalidEmails
if (line.contains("@")==false) {

invalidEmails.add(1);
}

return line.contains("@");
}

}

32

The call method increases also the value of
invalidEmails that is an accumulator

….
// Define an accumulator and initialize it to 0
final Accumulator<Integer> invalidEmails=sc.accumulator(0);

// Read the content of the input textual file
JavaRDD<String> emailsRDD = sc.textFile("emails.txt");

// Select only valid emails
JavaRDD<String> validEmailsRDD = emailsRDD.filter(new ValidEmail());

// Store valid emails in the output file
validEmailsRDD.saveAsTextFile(outputPath);

// Print the number of invalid emails
System.out.println("Invalid emails: "+invalidEmails.value());

33

….
// Define an accumulator and initialize it to 0
final Accumulator<Integer> invalidEmails=sc.accumulator(0);

// Read the content of the input textual file
JavaRDD<String> emailsRDD = sc.textFile("emails.txt");

// Select only valid emails
JavaRDD<String> validEmailsRDD = emailsRDD.filter(new ValidEmail());

// Store valid emails in the output file
validEmailsRDD.saveAsTextFile(outputPath);

// Print the number of invalid emails
System.out.println("Invalid emails: "+invalidEmails.value());

34

Definition of an accumulator of type Integer

….
// Define an accumulator and initialize it to 0
final Accumulator<Integer> invalidEmails=sc.accumulator(0);

// Read the content of the input textual file
JavaRDD<String> emailsRDD = sc.textFile("emails.txt");

// Select only valid emails
JavaRDD<String> validEmailsRDD = emailsRDD.filter(new ValidEmail());

// Store valid emails in the output file
validEmailsRDD.saveAsTextFile(outputPath);

// Print the number of invalid emails
System.out.println("Invalid emails: "+invalidEmails.value());

35

Read the final value of the accumulator

….
// Define an accumulator and initialize it to 0
final Accumulator<Integer> invalidEmails=sc.accumulator(0);

// Read the content of the input textual file
JavaRDD<String> emailsRDD = sc.textFile("emails.txt");

// Select only valid emails
JavaRDD<String> validEmailsRDD = emailsRDD.filter(new ValidEmail());

// Store valid emails in the output file
validEmailsRDD.saveAsTextFile(outputPath);

// Print the number of invalid emails
System.out.println("Invalid emails: "+invalidEmails.value());

36

Pay attention that the value of the accumulator is correct only
because an action (saveAsTextFile) has been executed on the
validEmailsRDD and its content has been computed (and
hence the call method of the ValidEmail class has been
executed on each element of emailsRDD)

2/26/2017

7

 Programmers can define accumulators based on new
data types (different from Integer and Double)

 To define a new accumulator data type of type T, the
programmer must define a class implementing the
org.apache.spark.AccumulatorParam<T> interface
 The following methods must be implemented

▪ public T zero(T initialValue)
▪ Return the "zero" (identity) value for an accumulator type

▪ public T addInPlace(T v1, T v2)
▪ Merge two accumulated values together

▪ public T addAccumulator(T v1 , T v2)
▪ Merge two accumulated values together

37

 Then, a new accumulator of type T can be
instantiated by using the Accumulator<T>
accumulator(T initialValue,
AccumulatorParam<T> param) method of
the JavaSparkContext class

 initialValue is the initial value of the accumulator

 param is the class specifying how the value of
accumulators of type T can be incremented

38

 Spark supports also broadcast variables
 A broadcast variable is a read-only (large)

shared variable

 That is instantiated in the driver

 And it is sent to all worker nodes that use it in one
or more Spark actions

40

 A copy each “standard” variable is sent to all the tasks
executing a Spark action using that variable
 i.e., the variable is sent “num. tasks” times

 A broadcast variable is sent only one time to each
executor using it in at least one Spark action (i.e., in at
least one of its tasks)
 Each executor can run multiples tasks using that variable

and the broadcast variable is sent only one time

 Hence, the amount of data sent on the network is limited
by using broadcast variables instead of “standard”
variables

41

 Broadcast variables are usually used to share
(large) lookup-tables

42

2/26/2017

8

 Broadcast variables are objects of type
Broadcast<T>

 A broadcast variable of type T is defined in
the driver by using the Broadcast<T>
broadcast(T value) method of the
JavaSparkContext class

 The value of a broadcast variable of type T is
retrieved (usually in transformations) by
using the T value() method of the
Broadcast<T> class

43

 Create an RDD from a textual file containing a
dictionary of pairs (word, integer value)
 One pair for each line
 Suppose the content of this file can be stored in main-

memory
 Create an RDD from a textual file containing a

set of words
 A sentence (set of words) for each line

 “Transform” the content of the second file
mapping each word to an integer based on the
dictionary contained in the first file
 Store the result in an HDFS file

44

 First file (dictionary)
java 1

spark 2

test 3

 Second file (the text to transform)
java spark

spark test java

 Output file
1 2

2 3 1

45

// Read the content of the input textual file
class MapToPair implements PairFunction<String, String, Integer> {

public Tuple2<String, Integer> call(String line) {
String[] fields = line.split(" ");

String word=fields[0];
Integer intWord=Integer.parseInt(fields[1]);

return new Tuple2<String, Integer>(word, intWord) ;
}

}

// Read the content of the dictionary from the first file
// Map each line to a pair (word, integer value)
JavaPairRDD<String, Integer> dictionaryRDD =

sc.textFile(inputDictionary).mapToPair(new MapToPair());

46

// Create a local HashMap object that will be used to store the
// mapping word -> integer
HashMap<String, Integer> dictionary=new HashMap<String, Integer>();

// Create a broadcast variable based on the content of dictionaryRDD
// Pay attention that a broadcast variable can be instantiated only
// by passing as parameter a local java variable and not an RDD
// Hence, the collect method is used to retrieve the content of the
// RDD and store it in the dictionary HashMap<String, Integer> variable
for (Tuple2<String, Integer> pair: dictionaryRDD.collect()) {

dictionary.put(pair._1(), pair._2());
}

final Broadcast<HashMap<String, Integer>> dictionaryBroadcast =
sc.broadcast(dictionary);

47

// Create a local HashMap object that will be used to store the
// mapping word -> integer
HashMap<String, Integer> dictionary=new HashMap<String, Integer>();

// Create a broadcast variable based on the content of dictionaryRDD
// Pay attention that a broadcast variable can be instantiated only
// by passing as parameter a local java variable and not an RDD
// Hence, the collect method is used to retrieve the content of the
// RDD and store it in the dictionary HashMap<String, Integer> variable
for (Tuple2<String, Integer> pair: dictionaryRDD.collect()) {

dictionary.put(pair._1(), pair._2());
}

final Broadcast<HashMap<String, Integer>> dictionaryBroadcast =
sc.broadcast(dictionary);

48

Define a broadcast variable

2/26/2017

9

class MapToIntegers implements Function<String, String> {
public String call(String line) {

String[] words=line.split(" ");
String transformedLine=new String("");
Integer intValue;

// map each word to the corresponding integer
for (int i=0; i<words.length-1; i++) {

intValue=dictionaryBroadcast.value().get(words[i]);
transformedLine=transformedLine.concat(intValue+" ");

}

intValue=dictionaryBroadcast.value().get(words[words.length-1]);
transformedLine=transformedLine.concat(intValue.toString());

return transformedLine;
}

}

49

class MapToIntegers implements Function<String, String> {
public String call(String line) {

String[] words=line.split(" ");
String transformedLine=new String("");
Integer intValue;

// map each word to the corresponding integer
for (int i=0; i<words.length-1; i++) {

intValue=dictionaryBroadcast.value().get(words[i]);
transformedLine=transformedLine.concat(intValue+" ");

}

intValue=dictionaryBroadcast.value().get(words[words.length-1]);
transformedLine=transformedLine.concat(intValue.toString());

return transformedLine;
}

}

50

Retrieve the content of the broadcast variable and use it

// Read the content of the second file
JavaRDD<String> textRDD = sc.textFile(inputText);

// Map each word in textRDD to the corresponding integer
// Each input element is a string. Also the output elements are strings
JavaRDD<String> mappedTextRDD=

textRDD.map(new MapToIntegers());

// Store the result in an HDFS file
mappedTextRDD.saveAsTextFile(outputPath);

51

