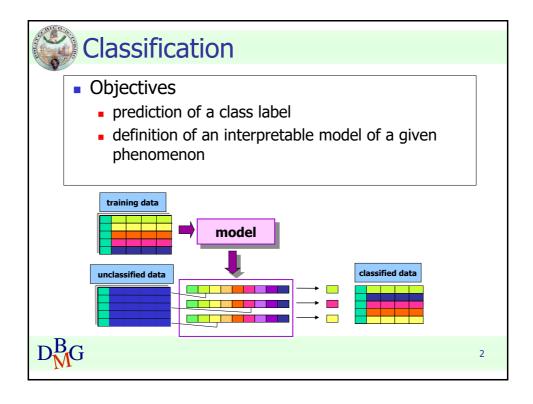
Classification fundamentals

Elena Baralis, Tania Cerquitelli



Classification: definition

- Given
 - a collection of class labels
 - a collection of data objects labelled with a class label
- Find a descriptive profile of each class, which will allow the assignment of unlabeled objects to the appropriate class

3

Definitions

- Training set
 - Collection of labeled data objects used to learn the classification model
- Test set
 - Collection of labeled data objects used to validate the classification model

Classification techniques

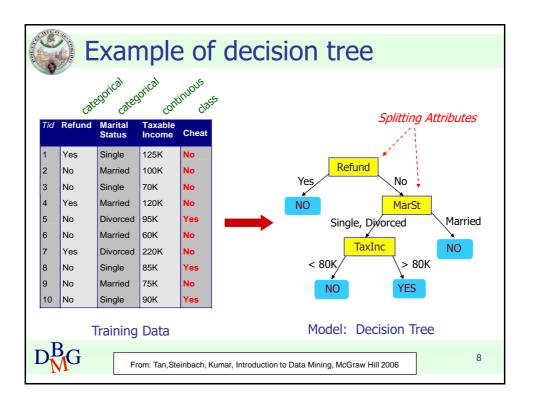
- Decision trees
- Classification rules
- Association rules
- Neural Networks
- Naïve Bayes and Bayesian Networks
- k-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)
-

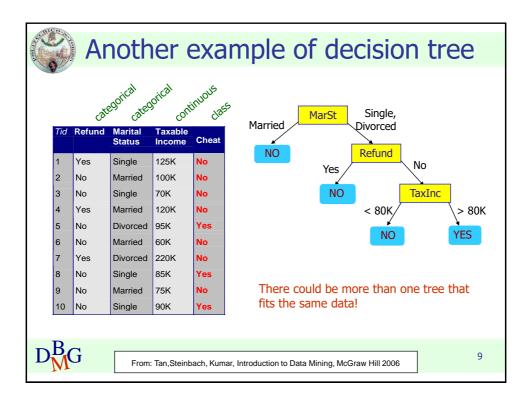
5

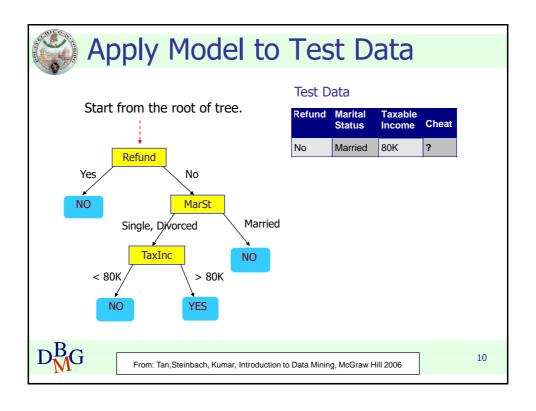
Evaluation of classification techniques

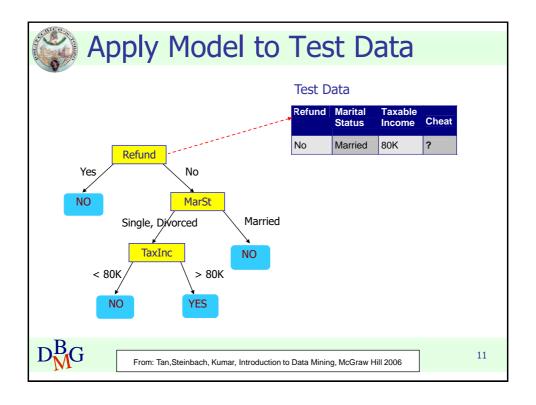
- Accuracy
 - quality of the prediction
- Efficiency
 - model building time
 - classification time
- Scalability
 - training set size
 - attribute number
- Robustness
 - noise, missing data
- Interpretability
 - model interpretability
 - model compactness

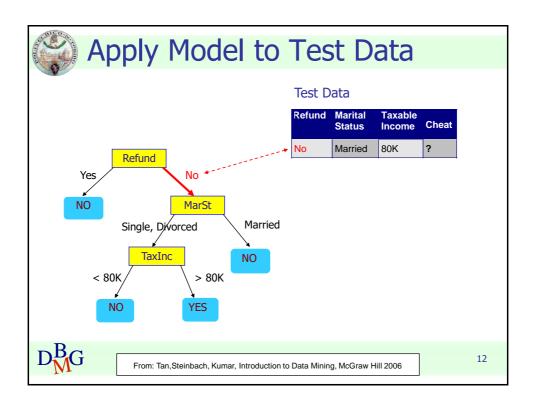
Ü

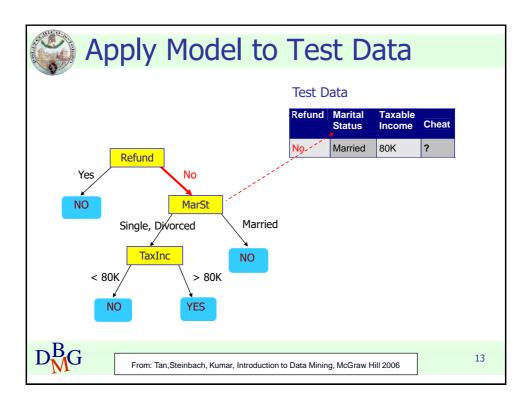


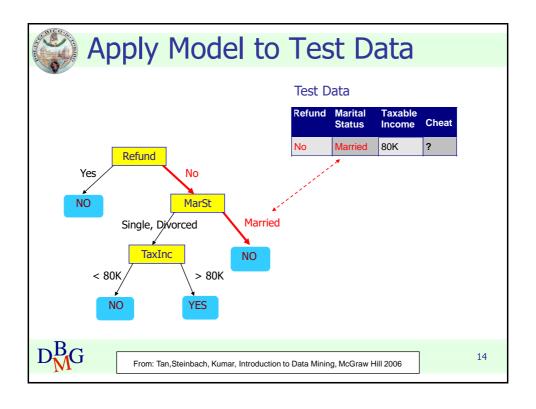


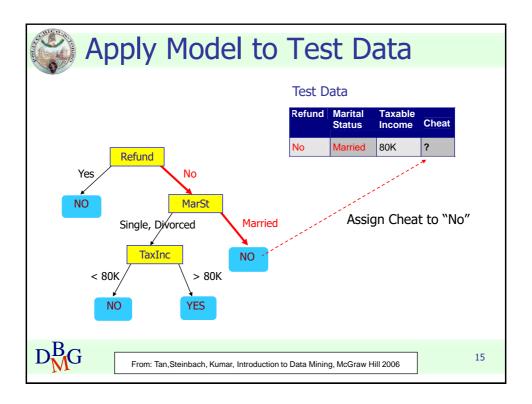


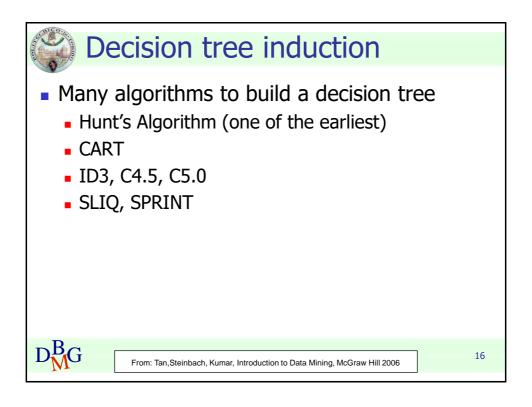


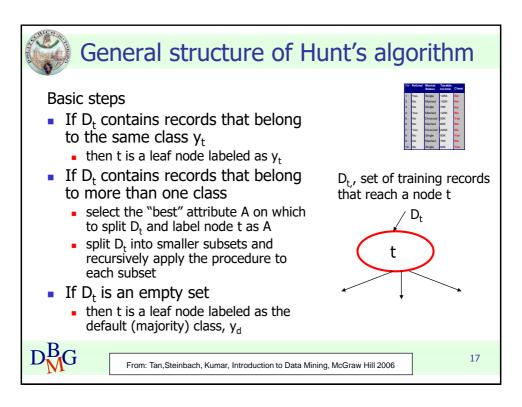






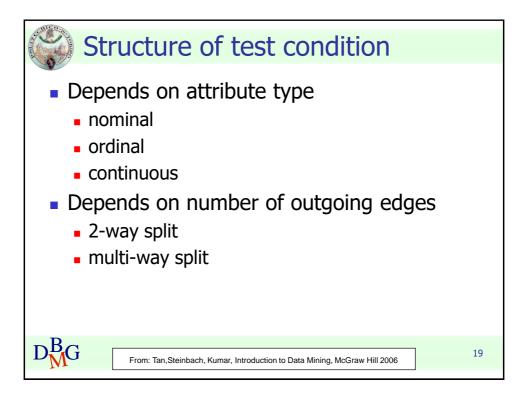


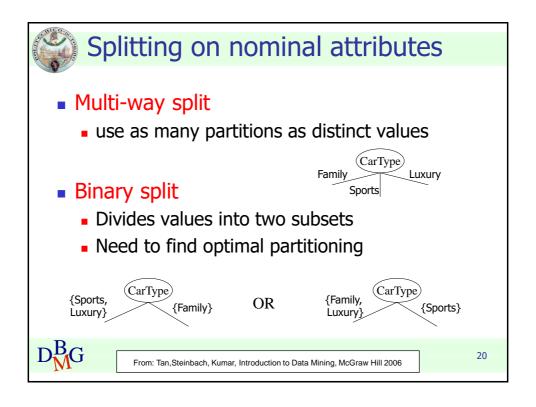


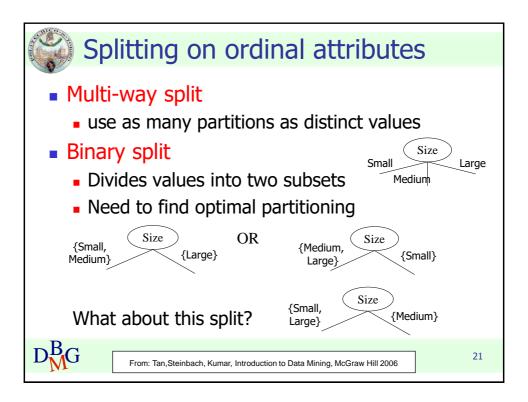


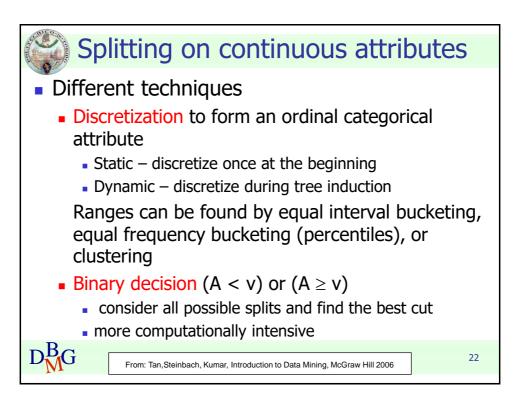
Decision tree induction

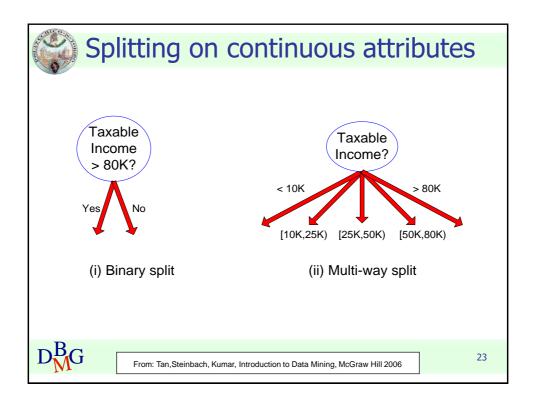
- Adopts a greedy strategy
 - "Best" attribute for the split is selected locally at each step
 - not a global optimum
- Issues
 - Structure of test condition
 - Binary split versus multiway split
 - Selection of the best attribute for the split
 - Stopping condition for the algorithm

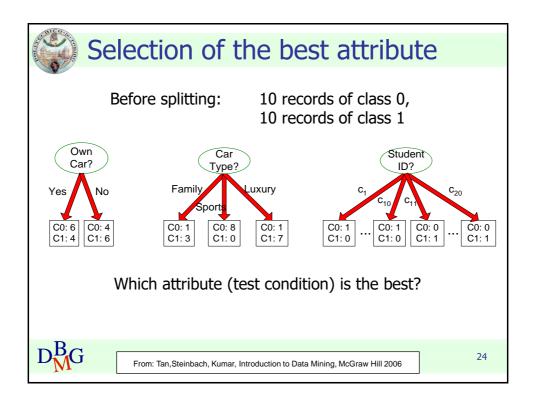


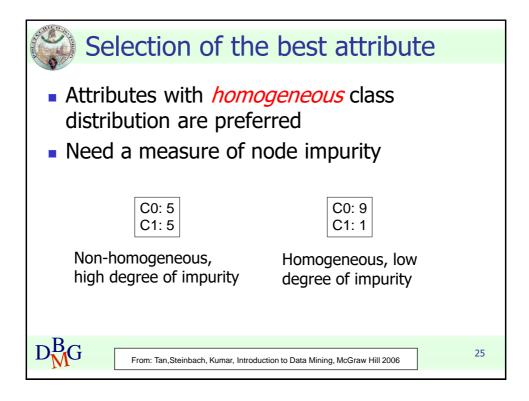


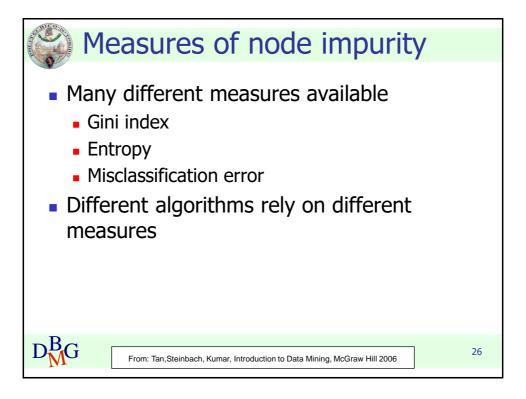












Decision Tree Based Classification

- Advantages
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets
- Disadvantages
 - accuracy may be affected by missing data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

27

Associative classification

Associative classification

The classification model is defined by means of association rules

(*Condition*) $\rightarrow y$

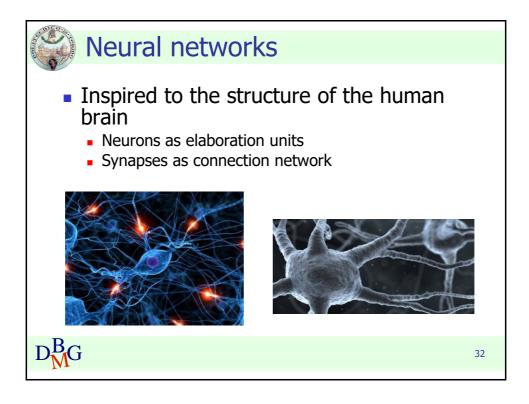
- rule body is an itemset
- Model generation
 - Rule selection & sorting
 - based on support, confidence and correlation thresholds
 - Rule pruning

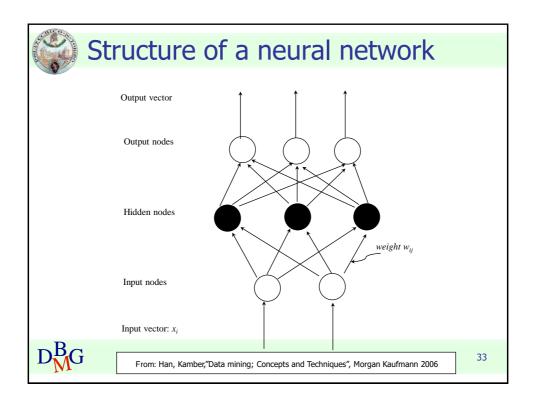
Database coverage: the training set is covered by selecting topmost rules according to previous sort

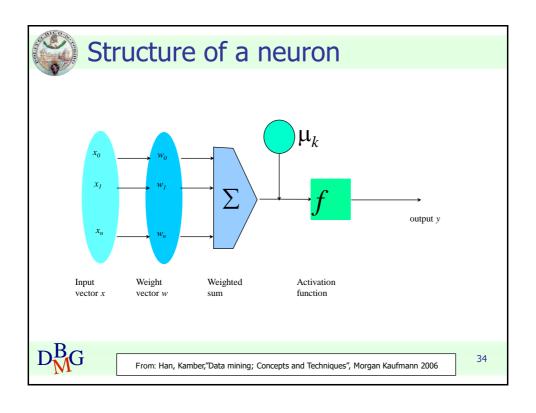
Associative classification

- Strong points
 - interpretable model
 - higher accuracy than decision trees
 - correlation among attributes is considered
 - efficient classification
 - unaffected by missing data
 - good scalability in the training set size
- Weak points
 - rule generation may be slow
 - it depends on support threshold
 - reduced scalability in the number of attributes
 - rule generation may become unfeasible

Neural networks







Construction of the neural network

- For each node, definition of
 - set of weights
 - offset value

providing the highest accuracy on the training data

Iterative approach on training data instances

35

Neural networks

- Strong points
 - High accuracy
 - Robust to noise and outliers
 - Supports both discrete and continuous output
 - Efficient during classification
- Weak points
 - Long training time
 - weakly scalable in training data size
 - complex configuration
 - Not interpretable model
 - application domain knowledge cannot be exploited in the model

Bayesian Classification

Politecnico di Torino

Bayes theorem

Let C and X be random variables

$$P(C,X) = P(C|X) P(X)$$

$$P(C,X) = P(X|C) P(C)$$

Hence

$$P(C|X) P(X) = P(X|C) P(C)$$

and also

$$P(C|X) = P(X|C) P(C) / P(X)$$

Bayesian classification

- Let the class attribute and all data attributes be random variables
 - C = any class label
 - $X = \langle x_1, ..., x_k \rangle$ record to be classified
- Bayesian classification
 - compute P(C|X) for all classes
 - probability that record X belongs to C
 - assign X to the class with maximal P(C|X)
- Applying Bayes theorem

$$P(C|X) = P(X|C) \cdot P(C) / P(X)$$

- P(X) constant for all C, disregarded for maximum computation
- P(C) a priori probability of C

$$P(C) = N_c/N$$

39

Bayesian classification

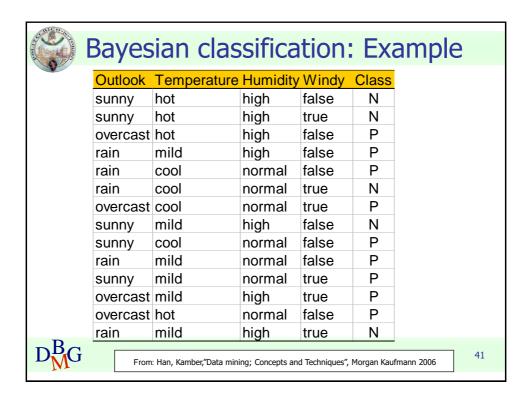
- How to estimate P(X|C), i.e. $P(x_1,...,x_k|C)$?
- Naïve hypothesis

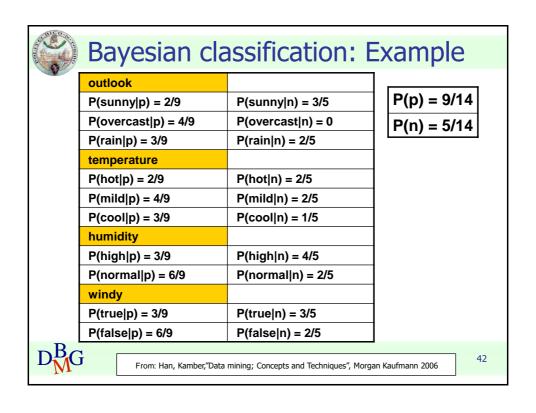
$$P(x_1,...,x_k|C) = P(x_1|C) P(x_2|C) ... P(x_k|C)$$

- statistical independence of attributes x₁,...,x_k
- not always true
 - model quality may be affected
- Computing P(x_k|C)
 - for discrete attributes

$$P(x_k|C) = |x_{kC}|/N_c$$

- $\, \bullet \,$ where $|x_{kC}|$ is number of instances having value x_k for attribute k and belonging to class C
- for continuous attributes, use probability distribution
- Bayesian networks
 - allow specifying a subset of dependencies among attributes





Bayesian classification: Example

- Data to be labeled
 - X = <rain, hot, high, false>
- For class p
 - $P(X|p) \cdot P(p) =$
 - = P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p)
 - $= 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
- For class n
 - $P(X|n)\cdot P(n) =$
 - = $P(rain|n) \cdot P(hot|n) \cdot P(high|n) \cdot P(false|n) \cdot P(n)$
 - $= 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$

From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

43

Model evaluation

Model evaluation

- Methods for performance evaluation
 - Partitioning techniques for training and test sets
- Metrics for performance evaluation
 - Accuracy, other measures
- Techniques for model comparison
 - ROC curve

45

Methods of estimation

- Partitioning labeled data in
 - training set for model building
 - test set for model evaluation
- Several partitioning techniques
 - holdout
 - cross validation
- Stratified sampling to generate partitions
 - without replacement
- Bootstrap
 - Sampling with replacement

Holdout

- Fixed partitioning
 - reserve 2/3 for training and 1/3 for testing
- Appropriate for large datasets
 - may be repeated several times
 - repeated holdout

47

Cross validation

- Cross validation
 - partition data into k disjoint subsets (i.e., folds)
 - k-fold: train on k-1 partitions, test on the remaining one
 - repeat for all folds
 - reliable accuracy estimation, not appropriate for very large datasets
- Leave-one-out
 - cross validation for k=n
 - only appropriate for very small datasets

Metrics for model evaluation

- Evaluate the predictive accuracy of a model
- Confusion matrix
 - binary classifier

	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	а	b	a: TP (true positive) b: FN (false negative)
	Class=No	С	d	c: FP (false positive)
				d: TN (true negative)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

49

Accuracy

Most widely-used metric for model evaluation

 $Accuracy = \frac{Number\ of\ correctly\ classified\ objects}{Number\ of\ classified\ objects}$

Not always a reliable metric

For a binary classifier

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	c (FP)	d (TN)	

Accuracy=
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

51

Limitations of accuracy

- Consider a binary problem
 - Cardinality of Class 0 = 9900
 - Cardinality of Class 1 = 100
- Model

$$() \rightarrow class 0$$

- Model predicts everything to be class 0
 - accuracy is 9900/10000 = 99.0 %
- Accuracy is misleading because the model does not detect any class 1 object

Limitations of accuracy

- Classes may have different importance
 - Misclassification of objects of a given class is more important
 - e.g., ill patients erroneously assigned to the healthy patients class
- Accuracy is not appropriate for
 - unbalanced class label distribution
 - different class relevance

53

Class specific measures

Evaluate separately for each class

Recall (r) = $\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects belonging to C}}$

Precision (p)= $\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects assigned to C}}$

Maximize

F - measure (F) =
$$\frac{2rp}{r+p}$$

Class specific measures

- For a binary classification problem
 - on the confusion matrix, for the positive class

Precision(p) =
$$\frac{a}{a+c}$$

Recall(r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006