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What is Cluster Analysis?

 Finding groups of objects such that the objects in a group 
will be similar (or related) to one another and different 
from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Applications of Cluster Analysis

 Understanding

 Group related documents 
for browsing, group genes 
and proteins that have 
similar functionality, or 
group stocks with similar 
price fluctuations

 Summarization

 Reduce the size of large 
data sets

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation in 
Australia

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Types of Clusterings

 A clustering is a set of clusters

 Important distinction between 
hierarchical and partitional sets of 
clusters

 Partitional Clustering
 A division data objects into non-overlapping subsets 

(clusters) such that each data object is in exactly 
one subset

 Hierarchical clustering
 A set of nested clusters organized as a hierarchical 

tree 

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

6DB
MG

Partitional Clustering

Original Points A Partitional  Clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Hierarchical Clustering

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Clustering Algorithms

 K-means and its variants

 Hierarchical clustering

 Density-based clustering

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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K-means Clustering

 Partitional clustering approach 

 Each cluster is associated with a centroid (center point) 

 Each point is assigned to the cluster with the closest 
centroid

 Number of clusters, K, must be specified

 The basic algorithm is very simple

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Evaluating K-means Clusters

 Most common measure is Sum of Squared Error (SSE)
 For each point, the error is the distance to the nearest cluster

 To get SSE, we square these errors and sum them.

 x is a data point in cluster Ci and mi is the representative point for 
cluster Ci

 can show that mi corresponds to the center (mean) of the cluster

 Given two clusters, we can choose the one with the smallest error

 One easy way to reduce SSE is to increase K, the number of clusters

 A good clustering with smaller K can have a lower SSE than a poor 
clustering with higher K


 


K

i Cx

i

i

xmdistSSE
1

2 ),(

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Solutions to Initial Centroids Problem

 Multiple runs
 Helps, but probability is not on your side

 Sample and use hierarchical clustering to 
determine initial centroids

 Select more than k initial centroids and then 
select among these initial centroids
 Select most widely separated

 Postprocessing

 Bisecting K-means
 Not as susceptible to initialization issues

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



Politecnico di Torino Clustering fundamentals

DataBase and Data Mining Group 9

17DB
MG

Pre-processing and Post-processing

 Pre-processing

 Normalize the data

 Eliminate outliers

 Post-processing

 Eliminate small clusters that may represent 
outliers

 Split ‘loose’ clusters, i.e., clusters with relatively 
high SSE

 Merge clusters that are ‘close’ and that have 
relatively low SSE

 Can use these steps during the clustering processFrom: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means

 K-means has problems when clusters are of 
differing 

 Sizes

 Densities

 Non-globular shapes

 K-means has problems when the data 
contains outliers.

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Original Points K-means Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Overcoming K-means Limitations
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Original Points K-means Clusters

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Overcoming K-means Limitations



Politecnico di Torino Clustering fundamentals

DataBase and Data Mining Group 13

25DB
MG

Hierarchical Clustering 

 Produces a set of nested clusters organized 
as a hierarchical tree

 Can be visualized as a dendrogram

 A tree like diagram that records the sequences of 
merges or splits
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Strengths of Hierarchical Clustering

 Do not have to assume any particular number 
of clusters
 Any desired number of clusters can be obtained 

by ‘cutting’ the dendogram at the proper level

 They may correspond to meaningful 
taxonomies
 Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Hierarchical Clustering

 Two main types of hierarchical clustering

 Agglomerative:  

 Start with the points as individual clusters

 At each step, merge the closest pair of clusters until only one cluster (or 
k clusters) left

 Divisive:  

 Start with one, all-inclusive cluster 

 At each step, split a cluster until each cluster contains a point (or there 
are k clusters)

 Traditional hierarchical algorithms use a similarity or distance 
matrix

 Merge or split one cluster at a time

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Agglomerative Clustering Algorithm

 More popular hierarchical clustering technique

 Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

 Key operation is the computation of the proximity of 
two clusters
 Different approaches to defining the distance between 

clusters distinguish the different algorithms

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective 
function
– Ward’s Method uses squared error

Proximity Matrix

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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DBSCAN

 DBSCAN is a density-based algorithm.
 Density = number of points within a specified radius (Eps)

 A point is a core point if it has more than a specified number 

of points (MinPts) within Eps

 These are points that are at the interior of a 
cluster

 A border point has fewer than MinPts within Eps, but is in 
the neighborhood of a core point

 A noise point is any point that is not a core point or a border 
point. 

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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DBSCAN: Core, Border, and Noise Points

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.62)

• Varying densities

• High-dimensional data

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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 The validation of clustering structures is the most difficult task

 To evaluate the “goodness” of the resulting clusters, some 
numerical measures can be exploited

 Numerical measures are classified into two main classes 

 External Index: Used to measure the extent to which cluster labels 
match externally supplied class labels.

 e.g., entropy, purity 

 Internal Index: Used to measure the goodness of a clustering 
structure without respect to external information. 

 e.g., Sum of Squared Error (SSE), cluster cohesion, cluster separation, Rand-
Index, adjusted rand-index

Measures of Cluster Validity

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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External Measures of Cluster Validity: Entropy and Purity

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
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 A proximity graph based approach can also be used for 
cohesion and separation.

 Cluster cohesion is the sum of the weight of all links within a cluster.

 Cluster separation is the sum of the weights between nodes in the cluster 
and nodes outside the cluster.

cohesion separation

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Internal Measures: Cohesion and Separation
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“The validation of clustering structures is 
the most difficult and frustrating part of 
cluster analysis. 

Without a strong effort in this direction, 
cluster analysis will remain a black art 
accessible only to those true believers who 
have experience and great courage.”

Algorithms for Clustering Data, Jain and 
Dubes

Final Comment on Cluster Validity

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006


