Big data: architectures and data analytics

Spark MLlib

Spark MLlib

- Spark MLlib is the Spark component providing the machine learning/data mining algorithms
 - Pre-processing techniques
 - Classification (supervised learning)
 - Clustering (unsupervised learning)
 - Itemset mining

Spark MLlib

- MLlib APIs are divided into two packages:
 - org.apache.spark.mllib
 - It contains the original APIs built on top of RDDs
 - org.apache.spark.ml
 - It provides higher-level API built on top of DataFrames for constructing ML pipelines
 - It is recommended because with DataFrames the API is more versatile and flexible
 - It provides the pipeline concept

Spark Mllib - Data types

Spark Mllib - Data types

- Spark MLlib is based on a set of basic local and distributed data types
 - Local vector
 - Labeled point
 - Local matrix
 - Distributed matrix
- DataFrames for ML are built on top of these basic data types

Local vectors

- Local org.apache.spark.mllib.linalg.Vector objects are used to store vectors of double values
 - Both dense and sparse vectors are supported
- The MLlib algorithms works on vectors of
 - Non double attributes/values must be mapped to double values

Local vectors

- Dense and sparse representations are supported
- E.g., a vector (1.0, 0.0, 3.0) can be represented
 - in dense format as [1.0, 0.0, 3.0]
 - or in sparse format as (3, [0, 2], [1.0, 3.0])
 - where 3 is the size of the vector
 - [0,2] contains the indexes of the non-zero cells
 - [1.0, 3.0] contains the values of the non-zero cells

Local vectors

 The following code shows how a vector can be created in Spark

import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0). Vector dv = Vectors.dense(1.0, 0.0, 3.0);

// Create a sparse vector (1.0, 0.0, 3.0) by // specifying its indices and values corresponding

Local vectors

 The following code shows how a vector can be created in Spark

import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0). Vector dv = Vectors.dense(1.0, 0.0, 3.0):

// Create a sparse vector (1.0, 0.0, 3.0) by
// specifying its indices and values corresponding
// to non-zero entries
Vector sv = Vectors.sparse(3, new int[] {0, 2}, new double [] {1.0, 3.0});

Labeled points

- org.apache.spark.mllib.regression.LabeledPoi nt objects are local vector associated with a label
 - The label is a double value
 - For the classification problem, each class label is associated with an integer value ranging from 0 to C-1, where C is the number of distinct classes
- Both dense and sparse vectors associated with a label are supported

 In MLlib, labeled points are used by many
- supervised learning algorithms

Labeled points

The following code shows how a LabeledPoint can be created in Spark

import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.regression.LabeledPoint;

// Create a labeled point with a positive label and // a dense feature vector

LabeledPoint pos = new LabeledPoint(1, Vectors.dense(1.0, 0.0, 3.0));

// Create a labeled point with a negative label and a sparse feature

// vectors. LabeledPoint neg = new LabeledPoint(o, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));

■ The following code shows how a LabeledPoint can be created in Spark import org.apache.spark.mllib.linalg.Vectors; Avector of double representing the values of the features/attributes // a dense feature vector. LabeledPoint pos = new LabeledPoint(a, Vectors.dense(1.0, 0.0, 3.0)); // Create a labeled point with a negative label and a sparse feature // vector. LabeledPoint neg = new LabeledPoint(o, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));

The following code shows how a LabeledPoint can be created in Spark import org.apache.spark.mllib.linalg.Vectors; Class labels // Create a labeled point with a positive label and // a dense feature vector. LabeledPoint pos = new LabeledPoint(1 Vectors.dense(1.0, 0.0, 3.0)); // Create a labeled point with a negative label and a sparse feature // vector. LabeledPoint neg = new LabeledPoint(0, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}));

The following code shows how a LabeledPoint can be created in Spanthers and the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 2 is associated with the positive class, while the value 1 is associated with the positive class, while the value 2 is associated with the positive class, while the value 1 is associated with the positive class, while the value 1 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class. If create a labeled point with a positive label and labeled point value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class. If create a labeled point with a positive class, while the value 2 is associated with the positive class, while the value 2 is associated with the positive class. If create a labeled point with a positive class, while the value 2 is associated with the positive class.

Sparse labeled data

- Frequently the training data are sparse
 - E.g., textual data are sparse. Each document contains only a subset of the possible words
 - Hence, sparse vectors are used
- MLlib supports reading training examples stored in the LIBSVM format
 - It is a commonly used format that represents each document/record as a sparse vector

16

Sparse labeled data

- The LIBSVM format
 - It is a text format in which each line represents a labeled sparse feature vector using the following format:
 - label index1:value1 index2:value2 ...
- where
 - label is an integer associated with the class label
 - the indexes are one-based (i.e., integer indexes starting from 1) representing the features
- the values are the (double) values of the features
- After loading, the feature indexes are converted to zero-based (i.e., integer indexes starting from o)

Sparse labeled data: example

- The following example file
 - 1 1:5.8 2:1.7
 - 0 1:4.1 3:2.5 4:1.2
- Contains two records/documents
 - A positive record (class 1) containing indexes 1 and 2 (i.e., features 1 and 2) with values 5.8 and 1.7 respectively
 - A negative record (class o) containing indexes 1, 3, and 4 (i.e., features 1, 3, and 4) with values 4.1, 2.5, and 1.2 respectively

Sparse labeled data

- The MLUtils.loadLibSVMFile method reads training examples stored in the LIBSVM format
- Example code with RDDs import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; import org.apache.spark.api.java.JavaRDD;

19

Sparse labeled data

Example code with DataFrames

....

JavaSparkContext sc = new JavaSparkContext(conf); SQLContext jsql = new SQLContext(jsc); // Read the content of a LIBSVM file and store it // in a DataFrame DataFrame data = jsql.createDataFrame(MLUtils.loadLibSVMFile(sc.sc(), "data/mllib/sample_libsvm_data.txt"), LabeledPoint.class);

20

Spark MLlib - Main concepts

Spark MLlib - Main concepts

- DataFrame
 - Spark ML uses DataFrames from Spark SQL as ML datasets, which can hold a variety of data types
 - E.g., a DataFrame could have different columns storing text, feature vectors, (true) labels, and predictions

22

Spark MLlib - Main concepts

- Transformer
 - A Transformer is an algorithm which can transform one DataFrame into another DataFrame
 - E.g., A feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g., feature vectors), and output a new DataFrame with the mapped column appended
 - E.g., a classification model is a Transformer which can be applied on a DataFrame with features and transforms it into a DataFrame with also predictions

23

Spark MLlib - Main concepts

- Estimator
 - An Estimator is an algorithm which can be applied on a DataFrame to produce a Transformer (a model)
 - An Estimator implements a method fit(), which accepts a DataFrame and produces a Model of type Transformer
 - An Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on an input dataset and returns a model
 - E.g., A classification algorithm such as Logistic Regression is an Estimator, and calling fit() on it a Logistic Regression Model is built, which is a Model and hence a Transformer

Spark MLlib - Main concepts

- Pipeline
 - A Pipeline chains multiple Transformers and Estimators together to specify a Machine learning/Data Mining workflow
 - The output of a transformer/estimator is the input of the next one in the pipeline
 - E.g., a simple text document processing workflow aiming at building a classification model includes several steps
 - Split each document into a set of words
 - Convert each set of words into a numerical feature vector
 - Learn a prediction model using the feature vectors and the associated class labels

25

Spark MLlib - Main concepts

- Parameter
 - All Transformers and Estimators share a common API for specifying parameters

26

Spark MLlib - Main concepts

- In the new APIs of Spark MLlib the use of the pipeline approach is preferred
- This approach is based on the following steps
 - 1) The set of Transformers and Estimators that are needed are instantiated
 - 2) A pipeline object is created and the sequence of transformers and estimators associated with the pipeline are specified
 - 3) The pipeline is executed and model is created
 - 4) (optional) The model is applied on new data

Classification algorithms

Classification algorithms

- Spark MLlib provides a (limited) set of classification algorithms
 - Logistic regression
 - Decision trees
 - SVMs (with linear kernel)
 - Only binary classification problem are supported by the SVMs classifiers
 - Naïve Bayes

• ...

29

Classification algorithms

- Each classification algorithm has its own parameters
- However, all the provided algorithms are based on two phases
 - Model generation based on a set of training data
 - Prediction of the class label of new unlabeled data
- All the classification algorithms available in Spark work only on numerical data
 - Categorical values must be mapped to integer values (i.e, numerical values)

Logistic regression and structured data

Logistic regression and structured data

- The following slides show how to
 - Create a classification model based on the logistic regression algorithm
 - Apply the model to new data
- The input dataset is a structured dataset with a fixed number of attributes
 - One attribute is the class label
 - The others are predictive attributes that are used to predict the value of the class label
 - We suppose the first column of the input file contains the class label

32

Logistic regression and structured data

 Consider the following example file 1,5.8,1.7

0,10.5,2.0

- It contains two records
- Each record has three attributes
 - The first attribute (column) is the class label
 - The second and the third attributes (columns) are predictive attributes

Logistic regression and structured data: example

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext;

import org.apache.spark.ml.Pipeline; import org.apache.spark.ml.PipelineModel; import org.apache.spark.ml.PipelineStage; import org.apache.spark.ml.classification.LogisticRegression; import org.apache.spark.ml.crgression.LabeledPoint; import org.apache.spark.SparkConf;

34

Logistic regression and structured data: example

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining;
 String inputFileTest;
 String outputPath;
}

inputFileTraining=args[o]; inputFileTest=args[1]; outputPath=args[2];

// Create a configuration object and set the name of the application SparkConf conf=new SparkConf().setAppName("MLlib – logistic regression");

// Create a Spark Context object
JavaSparkContext sc = new JavaSparkContext(conf);

Logistic regression and structured data: example

// Create an SQLContext SQLContext = new org.apache.spark.sql.SQLContext(sc);

// Read training data from a textual file // Each lines has the format: class-label, list of numerical attribute values // E.g., 1,1.0,5.0 JavaRDD-String> trainingData=sc.textFile(inputFileTraining);

// Map each element (each line of the input file) to a LabeledPoint JavaRDD<LabeledPoint> trainingRDD=trainingData.map(new InputRecord());

// Prepare training data.
// We use Spark SOL to convert RDDs of JavaBeans
// into DataFrames.
// Each data point has a set of features and a label
DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class);

Logistic regression and structured data: example

// Create an SQLContext SQLContext sqlContext = new orq.apache.spark.sql.SQLContext(sc);

// Read training data from a textual file
// Each lines has the formatical attribute walls # Each lines has come | E.g., 1,1.0,5.0 | JavaRDD<String> The InputRecord class map each string of the input RDD (i.e., each line of the input file) to a Labele

// Map each element (each line of the input file) to a LabeledPoint JavaRDD<LabeledPoint> trainingRDD=trainingData.map(new InputRecord());

// Prepare training data. // We use Spark SOL to convert RDDs of JavaBeans // into DataFrames.

"| into DataFrames.
|/ Each data point has a set of features and a label
DataFrame training = sqlContext.createDataFrame(trainingRDD, LabeledPoint.class);

Logistic regression and structured data: example

// Create an SQLContext SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

// Read training data from a textual file // Each lines has the format: class-label, list of numerical attribute values // E.g., 1,1.0,5.0

The training data are represented by means of a DataFrame of LabeledPoint. Each element of this DataFrame has two columns

features: the vector of real values associated with the attributes of the input record

// Prepare training data. // We use Spark SOL to convert RDDs of JavaBeans // into DataFrames. // Each data point has a set of features and a label

Lach data point has a set of reasones and a job.

DataFrame training = sqlContext.createDataFrame(trainingRDD,

LabeledPoint.class);

Logistic regression and structured data: example

// Create a LogisticRegression object. // LogisticRegression is an Estimator that is used to // create a classification model based on logistic regression. LogisticRegression Ir = new LogisticRegression();

// We can set the values of the parameters of the // we can set the values of the parameters of the // Logistic Regression algorithm using the setter methods. // There is one set method for each parameter // For example, we are setting the number of maximum iterations to 10 // and the regularization parameter. to 0.0.1 // rsetMaxIter(10); // rsetRegParam(0.01);

// Define the pipeline that is used to create the logistic regression // model on the training data // In this case the pipeline contains one single stage/step (the model // generation step). Pipeline pipeline = new Pipeline pipeline = new Pipeline ().setStages(new PipelineStage[] [Ir]);

Logistic regression and structured data: example

// Create a LogisticRegression object. // LogisticRegression is an Estimator that is used to // create a classification model based on logistic regression. LogisticRegression Ir = new LogisticRegression();

// We can set the values of the parameters of the

// we can set the values of the parameters of the control of the c

lr.setRegParam(o.o1);

This is the sequence of Transformers and Estimators to apply on the training data.

// In this case the pipeline contains one single stage/step (the model

// generation step).
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] [Ir]];

Logistic regression and structured data: example

// Execute the pipeline on the training data to build the // classification model
PipelineModel model = pipeline.fit(training);

// Now, the classification model can be used to predict the class label // of new unlabeled data $\,$

JavaRDD<String> testData=sc.textFile(inputFileTest);

// Map each element (each line of the input file) a LabelPoint
JavaRDD<LabeledPoint> testRDD=testData.map(
new InputRecord());

// Create the DataFrame based on the new test data DataFrame test = sqlContext.createDataFrame(testRDD, LabeledPoint.class);

Logistic regression and structured data: example

// Make predictions on test documents using the transform() // method. //The transform will only use the 'features' columns

DataFrame predictions = model.transform(test);

// The returned DataFrame has the following schema (attributes)

// - features: vector (values of the attributes)

// - label: double (value of the class label) // - rawPrediction: vector (nullable = true)

// - probability: vector (The i-th cell contains the probability that the

current record belongs to the i-th class

// - prediction: double (the predicted class label)

// Select only the features (i.e., the value of the attributes) and // the predicted class for each record
DataFrame predictionsDF=predictions.select("features", "prediction");

| Make predictions on test documents using the transform() | method. | The transform will only use the 'features' columns DataFrame predictions = model.transform(test) | The returned DataFrame has the following schema (attributes) | The model is applied to new data/records and the class label is predicted for each new data/record. | The new generated DataFrame has the same attributes of the input DataFrames plus the prediction attribute (and also some other attributes) | | Prediction: double (the predicted class label) | | Select only the features (i.e., the value of the attributes) and | The predicted class for each record DataFrame predictionsDF=predictions.select("features", "prediction");

```
| Make predictions on test documents using the transform() | method. |
| The transform will only use the 'features' columns DataFrame predictions = model transform(test);

| The returned DataFrame has the following schema (attributes) | features: vector (values of the attributes) | label: double (value of the class label) | rawPrediction: vector (nullable = true) | probability: vector (The i-th cell contains the probability that the current record belongs to the i-th class | record | The attribute values and the predicted class are selected | Select only the features (i.e., the value of the attributes) and | the predicted class for each record | DataFrame predictionsDF=predictions.select("features", "prediction");
```

Logistic regression and structured data: example // Save the result in an HDFS file JavaRDD</r> JavaRDD</ri> JavaRDD</ri> JavaRDD JavaRDD

| This is the class InputRecord. | It is used by the map transformation that is used to transform the input file | In an RDD of LabeledPoints package it. polito. bigdata.spark.spark.mllib; import org.apache.spark.api.java.function.Function; import org.apache.spark.apilib.regression.LabeledPoint; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.linalg.Vector;

Logistic regression and structured data: example public class InputRecord implements Function<String, LabeledPoint> { public LabeledPoint call(String record) { String[] fields = record.split(","); // Fields of o contains the id of the class double classLabel = Double.parseDouble(fields[o]); // The other cells of fields contain the (numerical) values of the attributes // Create an array of doubles containing these values double[] attributesValues = new double[fields.length-1]; for (int i = o; i < fields.length-1; ++i) { attributesValues[i] = Double.parseDouble(fields[i+1]); }

```
Logistic regression and structured data: example

// Create a dense vector based in the content of attributesValues Vector attrValues= Vectors.dense(attributesValues);

// Return a new LabeledPoint return new LabeledPoint(classLabel, attrValues);

}

}
```

Decision trees and structured

Decision trees and structured data

- The following slides show how to
 - Create a classification model based on the decision tree algorithm
 - Apply the model to new data
- The input dataset is a structured dataset with a fixed number of attributes
 - One attribute is the class label
 - The others are predictive attributes that are used to predict the value of the class label
 - We suppose the first column of the input file contains the class label

50

Decision trees and structured data

- The structure is similar to the one used to build a classification model by means of the logistic regression approach
- However, some specific methods are needed because the decision tree algorithm needs some statistics about the class label to build the model
 - Hence, an index must be created on the label before creating the pipeline that creates the decision tree-based classification model

Decision trees and structured data

Consider the following example file

1,5.8,1.7

0,10.5,2.0

- It contains two records
- Each record has three attributes
 - The first attribute (column) is the class label
 - The second and the third attributes (columns) are predictive attributes

52

Decision trees and structured data: example

 $package\ it.polito.bigdata.spark.sparkmllib;$

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.ml.Pipeline(Model);
import org.apache.spark.ml.Pipeline(Model);
import org.apache.spark.ml.Pipeline(Stage);
import org.apache.spark.ml.feature.loexToString;
import org.apache.spark.ml.feature.Stringlndexer;
import org.apache.spark.ml.feature.Stringlndexer(Model);
import org.apache.spark.ml.feature.Str

53

Decision trees and structured data: example

public class SparkDriver {
 public static void main(String[] args) {
 String inputFileTraining;
 String inputFileTest;
 String outputPath;
 }
}

inputFileTraining=args[0]; inputFileTest=args[1]; outputPath=args[2];

// Create a configuration object and set the name of the application $SparkConf conf=new\ SparkConf().setAppName("MLlib - DecisionTree");$

// Create a Spark Context object
JavaSparkContext sc = new JavaSparkContext(conf);

// Create an SQLContext SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

Decision trees and structured data: example

// Read training data from a textual file // Each lines has the format: class-label, list of numerical attribute values // E.g., 1,1.0,5.0 // JavaRDD-String> trainingData=sc.textFile(inputFileTraining);

// Map each element (each line of the input file) to a LabeledPoint JavaRDD<LabeledPoint> trainingRDD=trainingData.map(new InputRecord());

// Prepare training data.
// We use LabeledPoint, which is a JavaBean.
// We use Spark SQL to convert RDDs of JavaBeans
// into DataFrames.
// Each data point has a set of features and a label
DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class).cache():

Decision trees and structured data: example

// For creating a decision tree a label attribute with specific metadata is

// Create a DecisionTreeClassifier object.
// DecisionTreeClassifier is an Estimator that is used to
// create a classification model based on decision trees
DecisionTreeClassifier dc= new DecisionTreeClassifier();

dc.setLabelCol("indexedLabel");

// We can set the values of the parameters of the Decision Tree // For example we can set the measure that is used to decide if a // node must be split // In this case we set gini index dc.setImpurity("gin"); // Set the name of the indexed label column

5

Decision trees and structured data: example

// For creating a decision tree a label attribute with specific metadata is // needed

If the StringIndexer Estimator is used to achieve this operation

StringIndexerModel labelIndexer = new StringIndexer()
.setInputCol("label").setOutputCol("indexedLabel").fit(training);

This part is specific of the Decision Tree model generation process. It is not needed for generating a logistic regression algorithm

DecisionTreeClassifier dc= new DecisionTreeClassifier();

// We can set the values of the parameters of the Decision Tree // For example we can set the measure that is used to decide if a // node must be split // In this case we set gini index dc.setImpurity("gini"), // Set the name of the indexed label column dc.setLapelicO(i"indexedLabel");

Decision trees and structured data: example

// Convert indexed labels back to original labels.

// The content of the prediction attribute is the index of the
// predicted class

The original name of the predicted class is stored in

// the predictedLabel attribute

58

Decision trees and structured data: example

// Define the pipeline that is used to create the decision tree // model on the training data

// In this case the pipeline contains one single stage/step (the model // generation step).

Pipeline pipeline = new Pipeline()

.setStages(new PipelineStage[]{labelIndexer,dc,labelConverter});

// Execute the pipeline on the training data to build the // classification model

PipelineModel model = pipeline.fit(training);

Decision trees and structured data: example

// Define the pipeline that is used to create the decision tree

// model on the training data

// In this case the pipeline contains one single stage/step (the model // generation step).

Pipeline pipeline = new Pipeline()

.setStages(new PipelineStage[[[labelIndexer,dc, labelConverter]);

// Execute the pipeline on the training data to build the

PipelineModel model = pipeline.fit(training);

In this case the pipeline is composed of three steps

1) StringIndexer

Decision Tree classifier

IndexToString

Decision trees and structured data:

// Now, the classification model can be used to predict the class label // of new unlabeled data

// Read test (unlabeled) data JavaRDD<String> testData=sc.textFile(inputFileTest);

// Map each element (each line of the input file) a LabelPoint JavaRDD<LabeledPoint> testRDD=testData.map(new InputRecord());

// Create the DataFrame based on the new test data DataFrame test = sqlContext.createDataFrame(testRDD, LabeledPoint.class);

// Make predictions on test documents using the transform() method. // The transform will only use the 'features' columns DataFrame predictions = model.transform(test);

Decision trees and structured data:

```
//The returned DataFrame has the following schema (attributes)
//- features: vector (values of the attributes)
//- label: double (value of the class label)
//- label: double (value of the class label)
//- rawPrediction: vector (nullable = true)
//- probability: vector (The th: cell contains the probability that the
//- current record belongs to the i-th class
//- prediction: double (the predicted class label)
//- prediction: double (the predicted class label)
//- predicted Label: double (the predicted class label)
//- gredicted class for each record (in this case the prediction is in
//- predicted class)
//- predicted class (predicted clase)
//- DataFrame predictionsDE=predictions.select("features", "predictedLabel");
    // Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);
```

sc.close():

Decision trees and structured data: example

// This is the class InputRecord.

// It is used by the map transformation that is used to transform the input file // in an RDD of LabeledPoints

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.linalg.Vector;

Decision trees and structured data: example

public class InputRecord implements Function<String, LabeledPoint> {

public LabeledPoint call(String record) { String[] fields = record.split(",");

> // Fields of o contains the id of the class double classLabel = Double.parseDouble(fields[o]);

// The other cells of fields contain the (numerical) values of the attributes // Create an array of doubles containing these values double[] attributesValues = new double[fields.length-1];

for (int i = 0; i < fields.length-1; ++i) { attributesValues[i] = Double.parseDouble(fields[i+1]);

Decision trees and structured data: example

```
// Create a dense vector based in the content of attributes Values
Vector attrValues= Vectors.dense(attributesValues);
```

// Return a new LabeledPoint return new LabeledPoint(classLabel, attrValues);