Big data: architectures and
data analytics

Spark MLIib

Spark MLIib is the Spark component
providing the machine learning/data mining
algorithms

Pre-processing techniques

Classification (supervised learning)

Clustering (unsupervised learning)

ltemset mining

Spark MLIib

Spark MLIib

2/26/2017

Spark Mllib — Data types

MLIib APIs are divided into two packages:
org.apache.spark.mllib
It contains the original APIs built on top of RDDs
org.apache.spark.ml

It provides higher-level API built on top of DataFrames
for constructing ML pipelines

Itis recommended because with DataFrames the APl is
more versatile and flexible

It provides the pipeline concept

Spark Mllib — Data types

Spark MLlib is based on a set of basic local
and distributed data types

Local vector

Labeled point

Local matrix

Distributed matrix
DataFrames for ML are built on top of these
basic data types

Local vectors

Local org.apache.spark.mllib.linalg.Vector
objects are used to store vectors of double
values

Both dense and sparse vectors are supported
The MLIib algorithms works on vectors of
double

Non double attributes/values must be mapped to
double values

2/26/2017

Local vectors

Dense and sparse representations are
supported
E.g., a vector (1.0, 0.0, 3.0) can be
represented
in dense format as [1.0, 0.0, 3.0]
orin sparse format as (3, [0, 2], [1.0, 3.0])
where 3 is the size of the vector
[0,2] contains the indexes of the non-zero cells
[1.0, 3.0] contains the values of the non-zero cells

Local vectors

Local vectors

The following code shows how a vector can be
created in Spark

import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

/| Create a dense vector (1.0, 0.0, 3.0).
Vector dv = Vectors.dense(1.0, 0.0, 3.0);

/| Create a sparse vector (1.0, 0.0, 3.0) by
/I specifying its indices and values corresponding
/[to non-zero entries
Vector sv = Vectors.sparse(3, new int[] {o, 2},
new double[] {1.0, 3.0});

The following code shows how a vector can be
created in Spark

import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

/| Create a dense vector (1.0, 0.0, 3.0).

Vector dv =Vectors.dense(1.0, 0.0 2 0):
[Indexes of non-empty cells |

/| Create a sparse vector (1.0, 0.0, 3.0) by
/I specifying its indices and values correspghding
[[to non-zero entries

Vector sv = Vectors.sparse(3/ new int[]
new double[]f1.0, 3.0});

gloiithelvectol | [Velues ofnon-emptycels |

Labeled points

Labeled points

Local
org.apache.spark.mllib.regression.LabeledPoi
nt objects are local vector associated with a
label
The label is a double value
For the classification problem, each class label is associated
with an integer value ranging from o to C-1, where C is the
number of distinct classes
Both dense and sparse vectors associated with a label
are supported
In MLlIib, labeled points are used by many
supervised learning algorithms

The following code shows how a LabeledPoint can be
created in Spark

import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;

/| Create a labeled point with a positive label and

// a dense feature vector.

LabeledPoint pos = new LabeledPoint(z,
Vectors.dense(1.0, 0.0, 3.0));

/| Create a labeled point with a negative label and a sparse feature
[l vector.
LabeledPoint neg = new LabeledPoint(o,

Vectors.sparse(3, new int[] {o, 2}, new double[] {1.0, 3.0}));

Labeled points

2/26/2017

Labeled points

The following code shows how a LabeledPoint can be
created in Spark

import org.apache.spark.millib.linalg.Vectors;

A vector of double representing the values of the
features/attributes

ledPoint;
’

/I a dense feature vecter.
LabeledPoint pos = ne

abeledPo
‘Vectors.dense(:t.o, 0.0, 3.0*);

/| Create a labeled point with\a negative label and a sparse feature

/[vector.
Lajaladpninr neg =new LabeledPoint(o

Vectors.sparse(3, new int[] {o, 2}, new double[] {1.0, 3.0}*);

Labeled points

The following code shows how a LabeledPoint can be
created in Spq,

When a binary classification prot
the value 1 is ciated with th
import org.apac alt cia n
impor‘corg.apad e SPATK. D TEYGTESSTOT [CaUETeur Oty

/I Create a labeled point with a positive Jabel and

/] a dense feature vector.

LabeledPoint pos = new LabeledPoin
Vectors.dense(1.0, 0.0, 3.0));

|/ Create a labeled point with a negative label and a sparse feature

|/ vector.

LabeledPoint neg = new LabeledPoint

Vectors.sparse(3, new int[] {o, 2}, double[] {1.0, 3.0}));

Sparse labeled data

The LIBSVM format
Itis a text format in which each line represents a labeled
sparse feature vector using the following format:
label indexi:value1index2:valuez ...
where
label is an integer associated with the class label
the indexes are one-based (i.e., integer indexes starting
from 1) representing the features
the values are the (double) values of the features
After loading, the feature indexes are converted to
zero-based (i.e., integer indexes starting from o)

The following code shows how a LabeledPoint can be
created in Spark
import org.apache.spark.mllib.linalg.Vectors;

| Clacs labels riedPoint;

/| Create a labeled poirtt positive label and
/l a dense feature vector.

LabeledPoint pos = new Lab

/| Create a labeled point with a nega

|/ vector.

LabeledPoint neg = new LabeledPoint
Vectors.sparse(3, new int[] {o, 2},

Sparse labeled data

Frequently the training data are sparse
E.g., textual data are sparse. Each document
contains only a subset of the possible words
Hence, sparse vectors are used

MLIib supports reading training examples

stored in the LIBSVM format

Itis a commonly used format that represents each
document/record as a sparse vector

Sparse labeled data: example

The following example file
11:5.82:1.7
01:4.13:2.54:1.2
Contains two records/documents
A positive record (class 1) containing indexes 1
and 2 (i.e., features 1 and 2) with values 5.8 and
1.7 respectively
A negative record (class o) containing indexes 1, 3,
and 4 (i.e., features 1, 3, and 4) with values 4.1,
2.5, and 1.2 respectively

Sparse labeled data

The MLUtils.loadLibSVMFile method reads
training examples stored in the LIBSVM format

Example code with RDDs

import org.apache.spark.mllib.regression.LabeledPoint;

import org.apache.spark.mllib.util. MLUtils;

import org.apache.spark.api.java.JavaRDD;

JavaSparkContext sc = new JavaSparkContext(conf);

/| Read the content of a LIBSVM file and store it

//in a JavaRDD of LabeledPoints

JavaRDD<LabeledPoint> examples =
MLUTtils.loadLibSVMFile(sc.sc(),
"sample_libsvm_data.txt").toJavaRDD();

2/26/2017

Sparse labeled data

Example code with DataFrames

JavaSparkContext sc = new JavaSparkContext(conf);

SQLContext jsql = new SQLContext(jsc);

// Read the content of a LIBSVM file and store it

//in a DataFrame

DataFrame data = jsql.createDataFrame(
MLUTtils.loadLibSVMFile(sc.sc(),
"data/mllib/sample_libsvm_data.txt"),
LabeledPoint.class);

Spark MLIib - Main concepts

Spark MLIib - Main concepts

Transformer

ATransformer is an algorithm which can
transform one DataFrame into another
DataFrame
E.g., A feature transformer might take a DataFrame,
read a column (e.g., text), map it into a new column
(e.g., feature vectors), and output a new DataFrame
with the mapped column appended
E.g., a classification model is a Transformer which can be
applied on a DataFrame with features and transforms it
into a DataFrame with also predictions

Spark MLIib - Main concepts

DataFrame
Spark ML uses DataFrames from Spark SQL as ML
datasets, which can hold a variety of data types

E.g., a DataFrame could have different columns storing
text, feature vectors, (true) labels, and predictions

Spark MLIib - Main concepts

Estimator

An Estimator is an algorithm which can be applied on
a DataFrame to produce a Transformer (a model)
An Estimator implements a method fit(), which accepts a
DataFrame and produces a Model of type Transformer
An Estimator abstracts the concept of a learning
algorithm or any algorithm that fits or trains on an
input dataset and returns a model

E.g., A classification algorithm such as Logistic Regression is
an Estimator, and calling fit() on it a Logistic Regression
Model is built, which is a Model and hence a Transformer

2/26/2017

Spark MLIib - Main concepts

Spark MLIib - Main concepts

Pipeline Parameter
A Pipeline chains multiple Transformers and .
Estimators together to specify a Machine All Transformers and Estimators share a common
learning/Data Mining workflow API for specifying parameters

The output of a transformer/estimator is the input of the next

one in the pipeline
E.g., a simple text document processing workflow
aiming at building a classification model includes
several steps

Split each document into a set of words

Convert each set of words into a numerical feature vector

Learn a prediction model using the feature vectors and the
associated class labels

Spark MLIib - Main concepts

In the new APIs of Spark MLIib the use of the
pipeline approach is preferred
This approach is based on the following steps

1) The set of Transformers and Estimators that are
needed are instantiated

2) A pipeline object is created and the sequence of
transformers and estimators associated with the
pipeline are specified

3) The pipeline is executed and model is created

4) (optional) The modelis applied on new data

Classification algorithms

Classification algorithms Classification algorithms
Spark MLIib provides a (limited) set of Each classification algorithm has its own
classification algorithms parameters

However, all the provided algorithms are
based on two phases
Model generation based on a set of training data
Prediction of the class label of new unlabeled data
All the classification algorithms available in
Spark work only on numerical data

Categorical values must be mapped to integer
values (i.e, numerical values)

Logistic regression
Decision trees

SVMs (with linear kernel)

Only binary classification problem are supported by the
SVMs classifiers

Naive Bayes

Logistic regression and
structured data

Logistic regression and structured
data

Consider the following example file
1,5.8,1.7
0,10.5,2.0
It contains two records
Each record has three attributes
The first attribute (column) is the class label

The second and the third attributes (columns) are
predictive attributes

Logistic regression and structured

2/26/2017

Logistic regression and structured

data

The following slides show how to
Create a classification model based on the logistic
regression algorithm
Apply the model to new data
The input dataset is a structured dataset with a
fixed number of attributes
One attribute is the class label
The others are predictive attributes that are used to
predict the value of the class label

We suppose the first column of the input file contains
the class label

Logistic regression and structured

data: example

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;

import org.apache.spark.sql.SQLContext;

import org.apache.spark.ml.Pipeline;

import org.apache.spark.ml.PipelineModel;

import org.apache.spark.ml.PipelineStage;

import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.SparkConf;

Logistic regression and structured

data: example

public class SparkDriver {
public static void main(String[] args) {
String inputFileTraining;
String inputFileTest;
String outputPath;

inputFileTraining=args([o];
inputFileTest=args[1];
outputPath=args[2];

/| Create a configuration object and set the name of the application
SparkConf conf=new SparkConf{().setAppName("MLIib—
logistic regression");

/| Create a Spark Context object
JavaSparkContext sc = new JavaSparkContext(conf);

data: example

// Create an SQLContext
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

/I Read training data from a textual file

/l Each lines has the format: class-label, list of numerical attribute values
//E.g.,1,1.0,5.0

JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

[/ Map each element (each line of the input file) to a LabeledPoint
JavaRDD<LabeledPoint> trainingRDD=trainingData.map(
new InputRecord());

/[Prepare training data.

/| We use Spark SQL to convert RDDs of JavaBeans

// into DataFrames.

/| Each data point has a set of features and a label

DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class);

Logistic regression and structured

Logistic regression and structured

2/26/2017

data: example

// Create an SQLContext
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

/I Read training data from a textual ﬁ\e

/I Each lines has tha-£ ik ol inalasteibubossal
Il E.g.,1,1.0,5.0 g of the input RDD
JavaRDD<String> LabeledPoint

eledPoint

InputRecord()

/I Map each element (each line of the input file) to a
JavaRDD<LabeledPoint> trainingRDD=trainingData.
ne:

/| Prepare training data.

/I We use Spark SQL to convert RDDs of JavaBeans

// into DataFrames.

/ Each data point has a set of features and a label

DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class);

Logistic regression and structured

data: example

/| Create an SQLContext
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

/I Read training data from a textual file
/| Each lines has the format: class-label, list of numerical attribute values
/E.g.,1,1.0,5.0

The training data are represented by means of a DataFrame of LabeledPoin
Each element of this DataFrame has two columns

-label: the cl

attributes of the input record

/| Prepare training data.
/| We use Spark SQL to convert RDDs of JavaBeans
[linto DataFrames.

DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class);

Logistic regression and structured

data: example

/| Create a LogisticRegression object.

/[LogisticRegression is an Estimator that is used to

/I create a classification model based on logistic regression.
LogisticRegression Ir = new LogisticRegression();

/| We can set the values of the parameters of the

I/ Logistic Regression algorithm using the setter methods.

/[There is one set method for each parameter

/| For example, we are setting the number of maximum iterations to 10
/ and the regularization parameter. t0 0.0.1

Ir.setMaxlter(10);

Ir.setRegParam(0.01);

/| Define the pipeline that is used to create the logistic regression
// model on tﬁe training data

/[In this case the pipeline contains one single stage/step (the model
[generation step).

Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {Ir});

data: example

Logistic regression and structured

data: example

/| Create a LogisticRegression object.

/[LogisticRegression is an Estimator that is used to

/ create a classification model based on logistic regression.
LogisticRegression Ir = new LogisticRegression();

/| We can set the values of the parameters of the

I/ Logistic Regression algorithm using the setter methods.

/[There is one set method for each parameter

/I For example, we are setting the number of maximum iterations to 10
// and the regularization parameter. to 0.0.1

Ir.setMaxlter(10);

Ir.setRegParam(o.01);

This is the uence of Tra

This :m—»\e pipeline is g

Logistic regression and structured
data: example

/| Execute the pipeline on the training data to build the
/I classification model
PipelineModel model = pipeline fit(training);

/[Now, the classification model can be used to predict the class label
/I of new unlabeled data

// Read test (unlabeled) data
JavaRDD<String> testData=sc.textFile(inputFileTest);

/| Map each element (each line of the input file) a LabelPoint
JavaRDD<LabeledPoint> testRDD=testData.map(
new InputRecord());

/| Create the DataFrame based on the new test data
DataFrame test = sqlContext.createDataFrame(testRDD,
LabeledPoint.class);

/I Make predictions on test documents using the transform()
/] method.

[/ The transform will only use the 'features' columns
DataFrame predictions = model.transform(test);

/I The returned DataFrame has the following schema (attributes)

|/ - features: vector (values of the attributes)

|/ - label: double (value of the class label)

|/ - rawPrediction: vector (nullable = true)

// probability: vector (The i-th cell contains the probability that the
current record belongs to the i-th class

// prediction: double (the predicted class label)

/I Select only the features (i.e., the value of the attributes) and
[/ the predicted class for each record
DataFrame predictionsDF=predictions.select("features",

prediction");

Logistic regression and structured

Logistic regression and structured

2/26/2017

data: example

/I Make predictions on test documents using the transform()
/I method.

/I The transform will only use the ‘features' columns

DataFrame predictions = mod: ansform(test)

/[The returned DataFrame has th€ following schema (attributes)

| is applied ed

The mc
for each new data
Ther erated DataFrame has the
the prediction attribute (an

o new data/reco

ord

d also some othe

|/ - prediction: double (the predicted class label)

/] Select only the features (i.e., the value of the attributes) and
/l the predicted class for each record
DataFrame predictionsDF=predictions.select("features", "prediction");

Logistic regression and structured

data: example

data: example

/I Make predictions on test documents using the transform()
/I method.

/I The transform will only use the 'features' columns
DataFrame predictions = model.transform(test);

/I The returned DataFrame has the following schema (attributes)

|/ - features: vector (values of the attributes)

|/ - label: double (value of the class label)

|/ - rawPrediction: vector (nullable = true)

/] - probability: vector (The i-th cell contains the probability that the
i current record belonas to the i-th class
II-FI The attribute values and the predicted class are selected

1/ Select only the features (i.e., the\zalue of the attributes) and
/] the predicted class for each recol
‘ DataFrame predictionsDF=predictions.select("features", "prediction"); ‘

Logistic regression and structured
data: example

/| Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

/I Close the Spark Context object
sc.close();

Logistic regression and structured

data: example

public class InputRecord implements Function<String, LabeledPoint> §

public LabeledPoint call(String record) {
String[] fields = record.split(",");

/| Fields of o contains the id of the class
double classLabel = Double.parseDouble(fields[o]);

/I The other cells of fields contain the (numerical) values of the attributes
/| Create an array of doubles containing these values
double[] attributesValues = new double[fields.length-1];

for (inti=o; i < fields.length-1; ++i) {
attributesValues[i] = Double.parseDouble(fields[i+1]);
}

/I This is the class InputRecord.

/l ltis used by the map transformation that is used to transform the input file
//in an RDD of LabeledPoints

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.linalg.Vectors;

import org.apache.spark.mllib.linalg.Vector;

Logistic regression and structured

data: example

/I Create a dense vector based in the content of attributesValues
Vector attrValues= Vectors.dense(attributesValues);

/I Return a new LabeledPoint
return new LabeledPoint(classLabel, attrValues);

Decision trees and structured
data

Decision trees and structured data

2/26/2017

Decision trees and structured data

The following slides show how to
Create a classification model based on the decision
tree algorithm
Apply the model to new data
The input dataset is a structured dataset with a
fixed number of attributes
One attribute is the class label
The others are predictive attributes that are used to
predict the value of the class label

We suppose the first column of the input file contains
the class label

The structure is similar to the one used to
build a classification model by means of the
logistic regression approach
However, some specific methods are needed
because the decision tree algorithm needs
some statistics about the class label to build
the model

Hence, an index must be created on the label

before creating the pipeline that creates the
decision tree-based classification model

Decision trees and structured data

Decision trees and structured data:

Consider the following example file
1,5.8,1.7
0,10.5,2.0
It contains two records
Each record has three attributes
The first attribute (column) is the class label

The second and the third attributes (columns) are
predictive attributes

Decision trees and structured data:

example

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.*;

import org.apache.spark.sql.DataFrame;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SQLContext;

import org.apache.spark.ml.Pipeline;

import org.apache.spark.ml.PipelineModel;

import org.apache.spark.ml.PipelineStage;

import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.feature.IndexToString;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringindexerModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.SparkConf;

example

public class SparkDriver {
public static void main(String[] args) {
String inputFileTraining;
String inputFileTest;
String outputPath;

inputFileTraining=args[o];
inputFileTest=args[1];
outputPath=args[2];

/| Create a configuration object and set the name of the application
SparkConf conf=new SparkConf().setAppName("MLIib - Decision Tree");

/| Create a Spark Context object
JavaSparkContext sc = new JavaSparkContext(conf);

// Create an SQLContext
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

Decision trees and structured data:

example

/I Read training data from a textual file

/ Each lines has the format: class-label,list of numerical attribute values
/lE.g.,1,1.0,5.0

JavaRDD<String> trainingData=sc.textFile(inputFileTraining);

/I Map each element (each line of the input file) to a LabeledPoint
JavaRDD<LabeledPoint> trainingRDD=trainingData.map(new
InputRecord());

/| Prepare training data.

/| We use LabeledPoint, which is a JavaBean.

/I We use Spark SQL to convert RDDs of JavaBeans

// into DataFrames.

|/ Each data point has a set of features and a label

DataFrame training = sqlContext.createDataFrame(trainingRDD,
LabeledPoint.class).cache();

Decision trees and structured data:

example

/| For creating a decision tree a label attribute with specific metadata is
// needed
/| The StringIndexer Estimator is used to achieve this operation
StringlndexerModel labellndexer = new Stringindexer()
.setinputCol("label").setOutputCol(*indexedLabel").fit(training);
)

ion Tree model generation process. It is not ne

This part i
generatin

ecific of the
g a logistic regr

on algorithm

DecisionTreeClassifier dc= new DecisionTreeClassifier();

/| We can set the values of the parameters of the Decision Tree
/I For example we can set the measure that is used to decide if a
/I node must be split

/[Inthis case we set gini index

dc.setimpurity("gini");

/I Set the name of the indexed label column
dc.setLabelCol("indexedLabel");

Decision trees and structured data:

example

/| Define the pipeline that is used to create the decision tree
/I model on the training data
/I In this case the pipeline contains one single stage/step (the model
/I generation step).
Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[]{labelindexer,dc,labelConverter});

/| Execute the pipeline on the training data to build the
/I classification model
PipelineModel model = pipeline fit(training);

2/26/2017

Decision trees and structured data:
example

/I For creating a decision tree a label attribute with specific metadata is

/I needed

/I The StringIndexer Estimator is used to achieve this operation

StringIndexerModel labelindexer = new StringIndexer()
.setinputCol("label").setOutputCol("indexedLabel") fit(training);

/| Create a DecisionTreeClassifier object.

/I DecisionTreeClassifier is an Estimator that is used to
/| create a classification model based on decision trees
DecisionTreeClassifier dc= new DecisionTreeClassifier();

/| We can set the values of the parameters of the Decision Tree
/I For example we can set the measure that is used to decide if a
/I node must be split

/I Inthis case we set gini index

dc.setimpurity(“gini®);

|/ Set the name of the indexed label column
dc.setLabelCol("indexedLabel");

Decision trees and structured data:

example

/I Convert indexed labels back to original labels.

/I The content of the prediction attribute is the index of the

|/ predicted class

/I The original name of the predicted class is stored in

/[the predictedLabel attribute

IndexToString labelConverter = new IndexToString()
.setinputCol("prediction").setOutputCol("predictedLabel")
.setLabels(labelindexer.labels());

Decision trees and structured data:
example

|/ Define the pipeline that is used to create the decision tree

/I model on the training data

I In this case the pipeline contains one single stage/step (the model

/I generation step).

Pipeline pipeline = new Pipeline()
.setStages(new PipelineStage[]{labelindexer,dc,labelConverter});

/| Execute the pipeline on the training data to buil
/I classification model
PipelineModel model = pipeline fit(traini

n this case the pipeline is composed of three steps
StringIndexer

2) Decision Tree classifier

IndexToString

10

Decision trees and structured data:

example

/I Now, the classification model can be used to predict the class label
Il of new unlabeled data

// Read test (unlabeled) data
JavaRDD<String> testData=sc.textFile(inputFileTest);

I/ Map each element (each line of the input file) a LabelPoint
JavaRDD<LabeledPoint> testRDD=testData.map(new InputRecord());

/| Create the DataFrame based on the new test data
DataFrame test = sqlContext.createDataFrame(testRDD,
LabeledPoint.class);

/I Make predictions on test documents using the transform() method.
/I The transform will only use the ‘features' columns
DataFrame predictions = model.transform(test);

Decision trees and structured data:

example

2/26/2017

Decision trees and structured data:
example

/I The returned DataFrame has the following schema (attributes)

- features: vector (values of the attributes)

1/ - label: double (value of the class label)

|/ - indexedLabel: double (value of the class label after the initial transformation)
/I - rawPrediction: vector (nullable = true)

/1 - probability: vector (The i-th cell contains the probability that the

// current record belongs to the i-th class

1] - prediction: double (the predicted class label)

- predictedLabel: double (the predicted class label back to original labels)
/I Select only the features (i.e., the value of the attributes) and

/[the predicted class for each record (in this case the prediction is in

1 preé)icted Label)

DataFrame predictionsDF=predictions.select("features”, "predictedLabel");

/] Save the result in an HDFS file
JavaRDD<Row> predictionsRDD = predictionsDF.javaRDD();
predictionsRDD.saveAsTextFile(outputPath);

sc.close();

/I This is the class InputRecord.

// ltis used by the map transformation that is used to transform the input file
//in an RDD of LabeledPoints

package it.polito.bigdata.spark.sparkmllib;

import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.linalg.Vectors;

import org.apache.spark.mllib.linalg.Vector;

Decision trees and structured data:
example

Decision trees and structured data:

example

/| Create a dense vector based in the content of attributesValues
Vector attrValues= Vectors.dense(attributesValues);

// Return a new LabeledPoint
return new LabeledPoint(classLabel, attrValues);

public class InputRecord implements Function<String, LabeledPoint> {

public LabeledPoint call(String record) {
String[] fields = record.split(",");

/| Fields of o contains the id of the class
double classLabel = Double.parseDouble(fields[o]);

/I The other cells of fields contain the (numerical) values of the attributes
/| Create an array of doubles containing these values
double[] attributesValues = new double[fields.length-1];

for (inti=o; i < fields.length-1; ++i) {
attributesValues[i] = Double.parseDouble(fields[i+1]);

}

11

