24/05/2017

Introduction to Apache Storm

Apache Storm -

Apache Storm Apache Storm history

Apache Storm™ is a distributed Y sTorM Storm was first developed by Nathan Marz at

framework that is used for real-time BackType

processing of data streams BackType was a company that provided social
E.g., Tweets analysis, Log processing, ... search applications

Currently, it is an open source project of Later (2011), BackType was acquired by

the Apache Software Foundation Twitter, and now it is a critical part of their
http://storm.apache.org/ infrastructure

It is implemented in Clojure and Java Currently, Storm is a project of the Apache
12 core committers, plus ~ 70 contributors Software Foundation (since 2013)

Typical use cases Typical use cases

Stream processing Distributed RPC
Storm is used to process streams of data in real Storm can be used to parallelize an intense
time

function (e.g., a query) so that you can compute it
in real-time
Real-time analytics

Continuous computation
Storm can do continuous computation on data
streams in real time o
This might require processing each message as it comes Storm can analyze and extract insights or
or creating small batches over a little time complex knowledge from data that come from
An example of continuous computation is several real-time data streams
streaming trending topic detection on Twitter

http://storm.incubator.apache.org/

Storm adoption

24/05/2017

Storm adoption

Twitter
Personalization, search, revenue optimization, ...
200 nodes, 30 topologies, 50B msg/day, avg
latency <soms, Jun 2013

Yahoo
User events, content feeds, and application logs
320 nodes (YARN), 130k msg/s, June 2013

Spotify
recommendation, ads, monitoring, ...
v0.8.0, 22 nodes, 15+ topologies, 200k msg/s, Mar
2014

Alibaba

Cisco

WeatherChannel

Features of Storm

Features of Storm

Storm is
Distributed
Horizontally scalable
Fast
Fault tolerant
Reliable - Guaranteed data processing
Easy to operate
Programming language agnostic

Distributed

Storm is a distributed system than can run on a
cluster of commodity servers
Horizontally scalable

Storm allows adding more servers (nodes) to your
Storm cluster and increase the processing
capacity of your application

Itis linearly scalable with respect to the number of
nodes, which means that you can double the
processing capacity by doubling the nodes

Features of Storm

Features of Storm

Fast

Storm has been reported to process up to 1
million tuples per second per node
Fault tolerant

Units of work are executed by worker processes in
a Storm cluster. When a worker dies, Storm will
restart that worker (on the same node or on to
another node)

Reliable - Guaranteed data processing

Storm provides guarantees that each message
(tuple) will be processed at least once

In case of failures, Storm will replay the lost tuples
It can be configured to process each tuple only
once

Easy to operate
Storm is simple to deploy and manage
Once the cluster is deployed, it requires little
maintenance

24/05/2017

Features of Storm Storm vs Hadoop

Programming language agnostic HADOOP STORM
Even though the Storm platform runs on Java Batch processing Real-time processing
Virtual Machine, the applications that run over it Jobs runsto completion 7 = Topologies run forever

can be written in any programming language that
can read and write to standard input and output
streams

Storm vs Hadoop Storm vs Hadoop
HADOOP STORM HADOOP STORM
Batch processing Real-time processing Batch processing Real-time processing
Jobs runs to completion # Topologies run forever Jobs runs to completion # Topologies run forever
Scalable Scalable Scalable Scalable
Guarantees no data loss Guarantees no data loss Guarantees no data loss Guarantees no data loss
Open Source Open Source Open Source Open Source
Batch processing of Big Data Fast, real-time processing of
data streams
15

DNS Queries: Domain frequency

example

The motivation of Storm

. 4

Given a stream of DNS queries, compute the
frequency of each domain

DNS Queries: Domain frequency

DNS Queries: Domai

24/05/2017

n frequency

example

(1.1.1.1, “foo.com”)

(2.2.2.2, “bar.net”) Stream of
(3.3.3.3, “foo.com”) DNS queries
(4-4.4.4, “foo.com”)

(5.5.5.5, “bar.net”)

example

(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4-4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)

@

(“foo.com”, 3)
("bar.net”, 2)

Stream of
DNS queries

Frequency of
each domain

Functional programming and the

Functional programming and the

Domain frequency example

By using functional programming the word
count problem can be split in “isolated” sub-
problems
Each sub-problem is a function
It receives an input data (stream)
And emits output data (stream)

Domain frequency example

(1.1.1.1, “foo.com”)

Stream of N "
. (2.2.2.2, “bar.net”)

DNS queries N ”
N (3.3:3.3, “foo.com”)
Data (4444, “foo.com”)

(5.5.5.5, “bar.net”)

Functional programming and the

Functional programming and the

Domain frequency example

(1.1.1.1, “foo.com”)

Stream of
i (2.2.2.2, “bar.net”)
DNS queries N "
N (3.3.3.3, “foo.com”)
Data (4-4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)
Gf)
(“foo.com”)
Stream of (“bar.net)
A (“foo.com”)
domains

(“foo.com”)
(“bar.net”)

Domain frequency example

(1.1.1.1, “foo.com”)

Stream of
. (2.2.2.2, “bar.net”)
DNS queries N "
- (3.3.3.3, “foo.com”)
Data (4-4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)
G
(“foo.com”)
Stream of (“bar.net) 9(--)
R (“foo.com”)
domains

(“foo.com”)
(“bar.net”)

(“foo.com”, 3) | Frequency of
(“bar.net”,2) | each domain

Functional programming and the

Domain frequency example

The functional programming solution can be
represented as

g(f(Data)))

Data =input DNS queries

f(..) = it extracts the domain from each input DNS
query

g(..) = it computes the occurrences of each
domain

24/05/2017

Clojure

Clojure is a dialect of Lisp that targets the
JVM
It is a dynamic, compiled programming
language

Predominantly functional programming
Many interesting characteristics and value
propositions for software development,
notably for concurrent applications
Storm'’s core is implemented in Clojure

Clojure

The Word Count example in Clojure
frequencies (map second (Data))

9
frequencies and map are two predefined
functions of Clojure
map is used to “select” a field of a tuple of the
input data

frequencies is used to compute the occurrences of
each value of the input data

Scaling up

Clojure, Scala, Java, or many other languages
can be used to turn the previous code into a
multi-threaded application that utilizes all
cores on your server
But what if even a very big machine is not
enough for your application?

Too many real-time data to process
Moreover, you must manage failures

Scaling up

Scaling up

You can use Hadoop

It is distributed, fault-tolerant, and horizontally
scalable
But Hadoop is not designed for real-time and
continuous processing

Itis not able to process streams of data in real-time

Itis not able to update the output continuously in real-
time

Storm is the solution for this use case
It is distributed, fault-tolerant, horizontally
scalable, and reliable
It can perform continuous computation in real-
time
It manages scheduling and synchronization of the
application on a cluster of servers and hides the
failure management complexity

24/05/2017

Storm

Storm core concepts

Storm can be considered a distributed
Function Programming-like processing of
' data streams
It applies a set of functions, in a specific order,
on the elements of the input data streams

and emits new data streams

However, each function can store its state by
means of variables

Hence, it is not pure functional programming

Main concepts Data model
Tuple The basic unit of data that can be processed
Data Stream by a Storm application is called a tuple
Spout Each tuple is a predefined list of fields
Bolt

The data type of each field can be common data
Topology types, e.g., byte, char, string, integer, ..
Or your own data types, which can be serialized as
fields in a tuple
Each field of a tuple has a name

3

Data model Data model
Atuple is dynamically typed, that is, you just Storm processes streams of tuples
need to define the names of the fieldsin a Each stream is an unbounded sequence of tuples
tuple and not their data type Each stream
has a name

is composed of homogenous tuples (i.e., tuples
with the same structure)

However, each applications can process
multiple, heterogonous, data streams

24/05/2017

Data model: Example Spout
Tuple Spout
(1.1.1.1, “foo.com”) It is the component “generating/handling” the

input data stream
Spouts read or listen to data from external
sources and publish them (emit in Storm
terminology) into streams

IP address Domain
Stream of tuples

(1.1.1.3, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)

Examples Each spout can emit multiple streams, with
A spout can be used to connect to the Twitter API different schemas
and emit a stream of tweets For example, we can implement a spout that
A spout can be used to read a log file and emit a reads 10-field records from a log file and emits
stream of composed of the its lines them as two different streams of 7-fields and 4-

fields, respectively
Spouts can be
“unreliable” (fire-and-forget)
or “reliable” (can replay failed tuples)

Bolt Bolts can be used to
It is the component that is used to apply a Filter or transform the content of the input
function over each tuple of a stream streams and emit new data streams that will be
Bolts consume one or more streams, emitted processed by other bolts
by spouts or other bolts, and potentially Or process the data streams and store/persist the

result of the computation in some of “storage”
(files, Databases, ..)
Each bolt can emit multiple streams, with
different schemas

produce new streams

Bolt

Examples

A bolt can be used to extract one field from each
tuple of its input stream

A bolt can be used to join two streams, based on a
common field

A bolt can be used to count the occurrences of a
set of URLs

24/05/2017

Spouts and Bolts

The input streams of a Storm cluster are
handled by spouts

Each spout passes the data streams to bolts,
which transform them in some way

Each bolt either persists the data in some sort
of storage or passes it to some other bolts

A Storm program is a chain of bolts making
some computations/transformations on the
data exposed by spouts and bolts

Topology

Topology: Example

A Storm topology is an abstraction that
defines the graph of the computation
It specifies which spouts and bolts are used and
how they are connected
A topology can be represented by a direct
acyclic graph (DAG), where each node does
some kind of processing and eventually
forwards it to the next node(s) in the flow

i.e., atopology in Storm wires data and functions
via a DAG

Topology: Example

Topology: Example

24/05/2017

Topology: Example Relation To.pology— Functional
. I

Spout 1

Spout 1

Topology: Example #2 Topology: Example #2

Spout 1

There are two input data
streams in this topology

Spout 1

Topology: Example #2

Topology of the DNS Queries: Word

count example

There are also two output
data streams

“Execution” of a Topology

The topology is executed on the servers of
the cluster running Storm
The system automatically decides which parts of
the topology are executed by each server of the
cluster
We will see later how a topology is submitted for
execution on a cluster
Each topology runs until its is explicitly killed
Each cluster can runs multiple topologies at
the same time

24/05/2017

“Execution” of a Topology

Worker processes

Each node in the cluster can run one or more JVMs
called worker processes that are responsible for
processing a part of the topology.

Each topology executes across one or more worker
processes

Each worker process is bound to one of the topologies
and can execute multiple components (spouts and/or
bolts) of that topology

Hence, even if multiple topologies are run at the same time,
none of them will share any of the workers

“Execution” of a Topology

Executor

Within each worker process, there can be multiple
threads that execute parts of the topology. Each of
these threads is called an executor
An executor can execute only one of the components
of the topology, that is, any one spout or bolt in the
topology

But it may run one or more tasks for the same component
Each spout or bolt can be associated with many
executors and hence executed in parallel

“Execution” of a Topology

Tasks

A task is the most granular unit of task execution
in Storm

Each task is an instance of a spout or bolt

A task performs the actual data processing

Each spout or bolt that you implement in your
code executes as many tasks across the cluster
Each task can be executed alone or with another
task of the same type (in the same executor)

“Execution” of a Topology

Each executor
is a thread
is associated with a set of tasks
Hence, the following condition holds
#threads < #tasks
By default, the number of tasks is set to be
the same as the number of executors
i.e. Storm will run one task per thread

“Execution” of a Topology

The number of tasks for a component is
always the same throughout the lifetime of a
topology

You set it when you submit the topology
But the number of executors (threads) for a
component can change over time

You can add/remove executors for each
component

10

24/05/2017

Worker processes vs. Executors vs.

“Execution” of a Topology

A machine in 3 Storm cluster ,.\7 vun one ov more
s fo e Lo \q Each
uns enetw ((a specific topoloy.

But pay attention that you cannot set, at
runtime, a number of executors for a component
greater than the number of tasks initially
associated with the same component
If you plan to increase the number of executors for a
component of the topology during its execution,
without killing the topology, you must initially assign
to the component a number of tasks greater than the
number of initial executors

#tasks = maximum parallelism that you would achieve during A worker process is either idle or being used by a single
the life of the topology topology, and it is never shared across topologies
The same applies to its child executors and tasks

Example of a running topology Example of a running topology
The example topology consists of three ﬁ B
components [@ e ,mw Sl
one spout called BlueSpout |G (‘ \
two bolts called GreenBolt and YellowBolt [u] @ iy mw
The components are linked such that BlueSpout
sends its output to GreenBolt, which in turns ek Process
sends its own output to YellowBolt @] (o))

The following slide shows how a this simple [E{J

topology would look like in operation - 1 ﬂ\

Parallelism of the topology

Stream grouping

The parallelism of the topology is given by
the number of executors = number of threads
For each spout/bolt the application can
specify
The number of executors
This value can be changed at runtime
The number of tasks

This value is set before submitting the topology and
cannot be change at runtime

11

Stream grouping

Each bolt of a topology processes the tuples of
its input stream(s)
Specifically, the multiple tasks associated with
each bolt process the input stream(s)
Each task of a bolt will only get a subset of the tuples
from the subscribed stream(s)
Stream grouping in Storm provides complete
control over how this partitioning of tuples
happens among the tasks of a bolt subscribed to
a stream

24/05/2017

Stream grouping

Each bolt can processes multiple input
streams

For each stream, a different stream grouping
type can be applied

Stream grouping

Storm supports the following types of stream
groupings:

Shuffle grouping

Local (or shuffle) grouping

Fields grouping:

Partial Key grouping

All grouping

Global grouping

None grouping

Direct grouping

Custom grouping

Shuffle grouping

Shuffle grouping
Tuples are randomly distributed across the bolt's
tasks in a way such that each task is guaranteed to
get an equal number of tuples
This grouping is ideal when you want to distribute
your processing load uniformly across the tasks
and where there is no requirement of any data-
driven partitioning

Shuffle grouping

Topology

Spout Bolt

Running Topology - Shuffle grouping

Spout

l Task #3 }‘

P
< Task #2

Local (or shuffle) grouping

Local (or shuffle) grouping

If the tuple source spout/bolt and target bolt tasks
are running in the same worker, using this
grouping will act as a shuffle grouping only
between the target tasks running on the same
worker
Minimize any network hops resulting in increased
performance
In case there are no target bolt tasks running on
the source worker process, this grouping will act
similar to the shuffle grouping

12

Local (or shuffle) grouping

Topology

Running Topelogy — Local (or shuffle) grouping

Suppose that
*One worker contains Task #1 and Task #2 of the Spout and Task #1 of the Bolt
*Another worker contains Task #3 of the Spout and Task #2 of the Bolt

24/05/2017

Fields grouping

Fields grouping
The stream is partitioned by the fields specified in
the grouping
For example, if the stream is grouped by the "user-id"
field, tuples with the same user-id will always go to the
same task, buttuples with different user-id may go to
different tasks
Fields grouping is calculated with the following function
hash (fields) % (no. of tasks)
where hash is a hashing function
It does not guarantee that each task will get tuples to
process

Fields grouping

Fields grouping

Fields grouping

This grouping is useful when, for application
reasons, you need to send all the tuples of one or
more streams with the same field value to the
same task
For example

Count the number of tweets per user

Count the frequencies of a set of words

Join two streams based on common fields

Topology

Running Topology - Fields grouping

Suppose the field used to split the stream is field X

Partial Key grouping

Partial Key grouping

The stream is partitioned by the fields specified in
the grouping, like the Fields grouping, but are
load balanced between two downstream bolts,
which provides better utilization of resources
when the incoming data is skewed

Suppose the field used to split the stream is field X

13

All grouping

24/05/2017

All grouping

All grouping
All grouping is a special grouping that does not
partition the tuples but replicates them to all the tasks
A copy of each tuple will be sent to each task of the bolt

One common use case of all grouping is for sending
signals to bolts
For example, if you are doing some kind of parameter-
dependent filtering on one stream, you have to pass the filter
parameter to all bolts processing that stream
This can be achieved bY sending the parameter over a (signal) stream
that is subscribed by all bolts' tasks with all grouping
Another example is to send a reset message to all the tasks in
an aggregation bolt

Topology

Spout —@

Running Topology — All grouping

All tuples are sent to all Bolt's tasks

Global grouping

Global grouping
The entire stream goes to a single one of the
bolt's tasks
i.e., Global grouping does not partition the stream but
sends the complete stream to one single task
Specifically, it goes to the task with the lowest id
A general use case of this is when there needs to
be a reduce phase in your topology where you
want to combine all the results from previous
steps in the topology in a single final result

Global grouping

Global grouping
Something similar to global grouping can be achieved
by setting the number of tasks of the bolt to 1
But if you set the number of tasks to 1 this setting
limits the maximum parallelism of the bolt for each
input streams
You may have multiple streams of data coming
through different paths, and you might want only one
of the streams to be reduced (processed by only one
task) and others to be processed in parallel

Global grouping

Topology

Spout Bolt

Running Topology - Global grouping

Spout

Task #2

l Task #3

]
Task#2 |/

All'tuples are sent to the Bolt's task with id=1

None grouping

None grouping
This grouping specifies that you don't care how
the stream is grouped
Currently, none groupings are equivalent to shuffle
groupings

14

None grouping

Topology

(o

Running Topology — None grouping

24/05/2017

Direct grouping

Direct grouping
A stream grouped this way means that the producer
of the tuple decides which task of the consumer will
receive this tuple
Direct groupings can only be declared on streams that have
been declared as direct streams
Tuples emitted to a direct stream must be emitted using one
of the emitDirect methods specifying the task id of the
selected (consumer) task
For example, say we have a log stream and we want
to process each log entry using a specific bolt task on
the basis of the type of resource

Direct grouping

Topology

(o

Running Topology - Direct grouping

The spout decides, for each emitted tuple, to which bolt's task it must be sent

Custom grouping

Custom grouping
If none of the preceding groupings fit your use
case, you can define your own custom grouping
A specific interface must be implemented
The final result is similar to the one generated by
using Direct grouping, but in this case the code
used to split the stream is not part of the spout

Custom grouping

Topology

Running Topology - Custom grouping

Spout

| Task #3 }‘

=
<]

< Task #2

For each emitted tuple, the method of a custom class is used to decide which bolt's task will
process it

Manage Topologies

15

Submit/Deploy Topologies

Topologies are submitted/deployed by using the
storm command line program

bin/storm jar jarName.jar TopologyMainClass [Args]

TopologyMainClass is the class containing the
main method with the code used to configure
and submit the topology
This class specifies also if the topology must be
executed on the cluster or locally
Local deploy is used for testing purposes

24/05/2017

Submit/Deploy Topologies

Each topology has a unique name

Usually its name is specified by means of an
argument of the submission command

Kill Topologies

Topologies run forever

They must be explicitly killed to stop them
The command line used to kill a topology is
the following

bin/storm kill TopologyName

Rebalance Topologies

Sometimes you may need to spread out where
the workers for a topology are running
Example
Initial hardware setting: 10 node cluster running 4
workers per node
Suppose one topology is running on the cluster
New hardware setting: you add another 10 nodes to
the cluster
You may wish to have Storm spread out the workers for the
running topology so that each node runs 2 workers
The rebalance command provides an easy way to do this
without killing the topology

Rebalance Topologies

The rebalance command
Deactivates the topology for the duration of the
message timeout

The local variables of the tasks are not reset

Redistributes the workers evenly around the
cluster
The topology will then return to its previous state
of activation

Rebalance Topologies

The following storm command line can be
used to rebalance a topology

storm rebalance topology-name
[-w wait-time-secs]

[-n new-num-workers]

[-e component=parallelism]*

16

Rebalance Topologies

The rebalance command can also be used to
change the parallelism of a running topology
to increase its performance

Use the -n and -e switches to change the number

of workers and executors of a component
respectively

Pay attention that the maximum parallelism of
each component of a topology is always limited
by the (initial) number of tasks of the component

24/05/2017

Rebalance Topologies

Example
bin/storm rebalance MyTopology
-ng4
-e MySpout=4
-e MyBolt=8
This command sets, at runtime, the following
configuration for MyTopology
Number of workers = 4
Number of executors used to run MySpout = 4
Number of executors used to run MyBolt =8

17

