) &)
Scala
® \=J
Data types and
Variables
s s

10/18/2016

® ®
Basic Data Types
Int
Float
Double
Boolean
Char
String
1 ® P e ®
® ®
Variables
[private] var name|: type] = value
var is the keyword of Scala that is used to define a
variable
Variables must be initialized during their definition
The type of the variable is implicitly inferred from
the initialization value if the type is not specified
Variables are public if the keyword private is not
specified

10/18/2016

0

Variables: Examples

var sentence = “Hello world”
Implicit inference of the date type of sentence
var sentence: String = “Hello world”
Explicit definition of the date type of sentence

sentence is a public variable of type String and its
initial value is “Hello wotld”

€

®)

Variables: Examples

var weight = 75
var weight: Int = 75

weight is a public variable of type Int and its initial
value 1s 75

10/18/2016

© ©
Variables: Examples
private var weight = 75
private var weight: Int = 75
weight is a private variable of type Int and its initial
value is 75
® ®
Variables: Examples
var price = 10.5
var price: Double = 10.5
price is a public variable of type Double and its initial
value 1s 10.5

10/18/2016

® ®
Variables: Examples
var condition = true
var condition: Boolean = true
condition is a public variable of type Boolean and its
initial value is true
® ®
Variables: Examples
var firstCharacter = ‘2’
var firstCharacter: Char = @’
firstCharacter is a public variable of type Char and its
initial value is ‘@’
- ® @

10/18/2016

Immutable Variables (or Values)

[private] val name[: type] = value

val is the keyword of Scala that is used to define
immutable variables (i.e., constants) also called values

Immutable variables must be initialized during their
definition

The type of immutable variables is implicitly inferred from
the initialization value if the type is not specified

Immutable variables are public if the keyword private is
not specified

€

Immutable Variables: Examples

val sentence = “Hello wotld”
Implicit inference of the date type of sentence
val sentence: String = “Hello world”

Explicit definition of the date type of sentence

sentence is a public immutable variable of type String
and its initial value is “Hello world”

.
)

10/18/2016

© ©
Standard operators
Mathematical operators
S R0/
Boolean operators
|, &,!
® e e e ’ @
® ®
Standard operators: Examples
var num = 10
varden = 3
vatEs = 10/3
var ris = 10%3
var text = “Hello World”
text = text + Paolo”
- ® A

10/18/2016

0

Strings

Scala’s String is built on Java’s String

Scala’s String has also some additional features
Multiline literals

String interpolation

€

®)

Strings: Examples

Use of double quotes and special characters escaped
with backslash

val hello = “Hello There” /* Hello There */
val signature = “With regards, \nYour friend”
/*

With Regards,
Your friend

L

10/18/2016

0

%)

Strings: Examples

String concatenation (or string addition)
val hello = “Hello, “+ “World” /* Hello, World */
String comparison

val matched = (hello == “Hello, World™) /* true */

Unlike Java, in Scala the equals operator (==) compares the
contents of the Strings

1@

€

Multiline Strings

A multiline String can be created using triple-quotes

Multiline Strings are literal, and do not recognize the use of
backslashes, i.c., they do not recognize special characters

val greeting = """She suggested reformatting the file
by replacing tabs (\t) with newlines (\n);
"Why do that?", he asked. """

@’

10/18/2016

0

String interpolation

Building a string based on other variables/values can
be do with string addition

o
val approx = 355/113f
/* approx: Float = 3.141593 */
println("Pi; wsing 355/113, s about™ + approx + L&
/¥ Pi, using 355/113, is about 3.141593. ¢/

1@

€

String interpolation

String interpolation is another way to combine
variables/values inside a string

G
S

The Scala notation for is an prefix added before
the first double quote of the string

The dollar sign operator § (with optional braces) can
be used to insert references to variables/values

20

®)

10/18/2016

10

0

String interpolation: Example

val approx = 355/113f

/* approx: Float = 3.141593 */

printla(s"Pi, using 355/113, is about ${approx}.")
/* Pi, using 355/113, is about 3.141593. */

21

€

Strings: Other particular
operations

Repeat the same sequence of characters multiple
times

val repeatHi="Hi "*5
println(repeatHi)

val str1=“Paolo ”

val num=10

val rep=str1*num

println(rep)

22,

10/18/2016

11

0

@

Regular expressions

As many other languages, Scala supports regular
expressions

A regular expression is a string of characters and
punctuation that represents a search pattern

The format is the same used by the Java class
java.util.regex.Pattern

23

%)

1@

€

Use of regular expressions:
Example

matches

It is used to check if the content of String matches the
provided regular expression

var sentence= "Test matching operation”
var res: Boolean =sentence.matches("Test .*")

println(res)

24

®)

@’

10/18/2016

12

0

Use of regular expressions:
Example

replaceAll

Replaces all matches of the regular expression with the
specified replacement text

var sentence= "milk, tea, muck"

var res: String = sentence.replaceAll("m[" |+k",
fcoffcel

println(res)

25

1@

€

®)

Use of regular expressions:
Example

replacelirst

Replaces the first match of the regular expression with the
specified replacement text

var sentence= "milk, tea, muck"

var res: String = sentence.replaceFirst("m[” |+k",
"coffee")

println(res)

26

@’

10/18/2016

13

10/18/2016

0

The Scala data type hierarchy

Any

Numeric Types Char Boolean Collections Classes String

11 R

1@

€

®)

Common operations

The following operations are available on all types
aslnstanceOf[<type>]

Converts the value to a value of the desired type

Causes an error if the value is not compatible with the new
type.
E.g, 5.aslnstanceOf[Long]

28

@’

14

< ©
Common operations
getClass
Returns the type (i.e., the class) of a value
E.g, (7.0 / 5).getClass
© ©
Common operations
isInstanceOf
Returns true if the value has the given type
E.g, (5.0).isInstanceOf[Float|
. ® e

10/18/2016

15

< ©
Common operations
to<type>
Conversion functions to convert a value to a compatible
E.g., 20.toByte
47 .toFloat
P 31
© ©
Common operations
toString
Renders the value to a String
E.g., (3.0 / 4.0).toString
@ 32 @

10/18/2016

16

0

Cast: Data type conversion

aslnstanceOf[<type>] and the to* methods can be
used to convert data from one data type to another

Obviously only if the content of the “input” variable /value
is compatible with the “output’” data type

The to* methods are preferred

33

1@

€

®)

Cast: Examiples

var longAge: Long = 40
var intAge: Int = longAge.tolnt
printlongAge+"---"+intAge)

var stringAge: String = "40"
var intAge=stringAge.tolnt

print(stringAge+"---"+intAge)

34

@’

10/18/2016

17

Arrays, Lists, Maps,
Tuples

Basic operations

® ®

Collections and complex data
types in Scala
Array
List
Map
Tuple
e

36

o

| @

10/18/2016

18

0

()3

%)

Arrays

Scala provides the Array data type

Scala supports

Homogeneous arrays

All the elements of the array are associated with the same data
type
Heterogeneous arrays

The elements of the array belong to different data types

37

{@

€

®)

Homogeneous arrays: Example

Definition of an array of integers containing the
values 1,2 3

val numbers = Array(l, 2, 3)
numbers is of type Array|[Int]

38

10/18/2016

19

® ®
Homogeneous arrays: Example
Print on the console the value of the first element
val numbers = Arrays(l, 2, 3)
println(numbers(0))
® ®
Heterogeneous arrays: Example
Definition of an array containing integers and strings
val mix = Array(1, “Hello”, “World”, 10)
mix is of type Array[Any]
. © w2

10/18/2016

20

0

Collections: List

Scala provides the List data type

Scala supports

Homogeneous lists

All the elements of the list are associated with the same data
type
Heterogeneous lists

The elements of the list belong to different data types

41

%)

€

Homogeneous lists: Example

Definition of a list of integers containing the values 1,

s
val numbers = List(1, 2, 3)
ot
val numbers =1 ::2:: 3 :: Nil
numbers is of type List[Int]

42

10/18/2016

21

® ®
Homogeneous lists: Example
Print on the console the value of the first element
val numbers = List(1, 2, 3)
println(numbers(0))
® ®
Heterogeneous lists: Example
Definition of a list containing integers and strings
val mix = List(1, “Hello”, “Wotld”, 10)
ot
val mie = e SHelle 2 s iWinild e i) Nl
mix is of type List[Any]
. © o

10/18/2016

22

0

%)

Concatenation of lists

Concatenate lists
val res = list1 ::: list2
Or

val res = List.concat(listl, list2)

List.concat() receives as arguments two or more lists

45

€

®)

Collections: Map

Scala provides the Map data type

Map is used to maintain the mapping between keys
and values

Each key is associated with only one value

46

10/18/2016

23

0

Maps

Add a new pair key -> value

mapvariable += newkey -> newvalue

Retrieve the value associated with a key

mapvariable(key)
or
mapvariable.get(key).get

Default value for missing keys

mapvariable.get(key).getOrElse(default value)

47

%)

1@

€

Maps: Example

Definition of a map variable that maps integers (key)

to strings (values)

/* Define the Map and insert the first key -> value pair

&

val mapper = Map(1 -> “Hello”)
/* Add a new pair */

mapper += 2 -> “World”
println(mapper(1))

48

@’

10/18/2016

24

0

Maps: Example

Definition of a map variable that maps integers (key)
to strings (values)

/* Define an empty Map of type Map|Int, String] */
val mapper: Map[Int, String] = Map()

/* Add two new paits */

mapper += 1 -> “Hello”

mapper += 2 -> “World”

println(mapper(1))

49

1@

€

Maps: Example #2

Definition of a map variable that maps string (key) to
strings (values)

val stateCapitals = Map("Alabama" -> "Montgomery",
"Alaska" -> "Juneau")

println("Alabama: " + stateCapitals(" Alabama")
.getOrElse("Unknown"))

println("Italy: " +
stateCapitals.get("Italy").getOrElse("Unknown"))

50

®)

@’

10/18/2016

25

0

%)

Tuples

Scala has a specific data type that is used to represent
tuples

Tuples are groups of N items

Elements are unrelated to each other. The data types can be
different

They are useful to return a set of values from a method
without defining a new class od structure

Pay attention that the items of tuples are immutable

51

{@

€

®)

Tuples

Definition of tuples

var name=(comma separated list of items)

Retrieval of the N-th item

name._N

52 =~

10/18/2016

26

0

Tuples: Examples

Scala: Java:

val tuple: Tuple2|Int,
String] = (1, “apple”) = new Pair<Integer,

String>(1, “apple”)

val quadruple =
(2, “orange’, 0.5d, false)

in Java

Pair<Integer, String> tuple

Quadruples: No equivalent

53

€

Tuples: Examples

/* Define a tuple with three items */
val profile=(“Paolo”, “Garza”, 40)
println(“Name:” + profile._1)
println(“Surname:” + profile._2)

println(“Age:” + profile._3)

54

®)

10/18/2016

27

< <
Generics in Scala
Analogously to Java, also Scala supports generics
© e e e e
® ®
Generics: Examples
Scala: Java:
List[String] List<String>
List[Int] List<Integer>
Map[Int, String] Map<Int, String>
1 ® =

10/18/2016

28

©
©

Expressions

© s
® ()
Expressions
Expression
A unit of code that returns a value
One or more lines of code can be considered an expression
if they are collected together using curly braces
This is known as expression block

10/18/2016

29

0

Expressions: Example

“hello”

Is a very simple expression

C(hel,7+7,1o,7

Is another very simple expression

As we already did, expressions can be used to assign
values to variables and immutable variables (values)

val message="hello”

59

o

1@

€

Expression blocks

An expression block is a sequence of one or more
lines of code

An expression has its own scope, and may contain
values and variables local to the expression block

The last expression in the block is the return value for
the entire block

60

@’

10/18/2016

30

0

Expression blocks: Example

Example with expressions containing only one line of
code

vl = 5w 208
val amount = x + 10

Example with an expression block with multiple lines
of code

val amount = {val x = 5* 20; x + 10 }

The value of amount is the same in both cases -

1@

€

®)

Expression blocks: Example

Example with expressions containing only one line of
code

el = 5 @ 208
val amount = x + 10

Example with an expression block with multiple lines
of code | x s visible only inside the expression block

val amount = {val x|= 5 * 20; x + 10 }

The value of amount is the same in both cases "

@’

10/18/2016

31

0

Expression blocks: Example

Example with expressions containing only one line of
code

vl = 5w 208
val amount = x + 10

Example with an expression block with multiple lines
of code This is the returned value (expression)

val amount = {val x = 5 * 20; }

The value of amount is the same in both cases -

€

®)

Expression blocks: Example

Example with an expression block with multiple lines
of code

val amount = {val x =5 * 20; x + 10 }
Is equivalent to
val amount = {val x = 5 * 20

bt 1

64

10/18/2016

32

0

o

Expression blocks: Example

Example with an expression block with multiple lines
of code

val amount = {val x = 5 * 20; x + 10 }
Is equivalent to

val amount = {val x = 5 * 20

} This is the returned value (expression)

€

®)

Expression blocks: Example

Example of a three-deep nested expression block

valtes = {vala=1; {valb=a*2; {valc=b + 4;¢c}

i

66

10/18/2016

33

0

©)

Expression blocks: Example

Example of a three-deep nested expression block

val res = {Vala:l;{Valb:a*Z;{valc:b+4;|€|}
5

This is the returned value (expression)

©

o

Conditional
expressions

10/18/2016

34

0

()3

if-then-else

if-then-else in Scala is analogous to those of the Java,
C, C++ languages

However, it is also an expression

The if expression evaluates a Boolean expression

If the result of the Boolean expression is equal to true a

block of code is executed

Otherwise the block of code associated with the else part

of the statement is executed

%)

{@

€

Scala:
if (tesd) {
/* code */
Lelse |

if-then-else

Java:

if (tesd) {

feelse {

70

®)

10/18/2016

35

0

if-then-else

Scala: Java:

if (test) { if (test) {
} else if (rest2) { } else if (rest2) {

} else { } else {

71

€

®)

if-then-else as an expression

if-then-else in Scala is also an expression

If the Boolean condition of the if-then-else is true
then last expression of the if expression block is the
returned value

Otherwise, the last expression of the else block is the
returned value

72

10/18/2016

36

0

()\\‘/

if-then-else as an expression:
Example

val x=10
val y=20
val max = {if (x>y) x else y}

println(max)

©

o

€

if-then-else as an expression:

Example#2

val x=10
val y=20
val max = { if (x>y) {
printn(x +">"+)
X }
else {
println(x +"<="+ y)
v
§

println(max)

74

®)

10/18/2016

37

Match expressions

© ®

€

Match expressions

Match expressions are like the “switch” statements in
Java and C++

A single input item is evaluated and the first
pattern that is “matched” is executed and its
value returned

76

®)

| @

10/18/2016

38

0

%)

Match expressions

Like C’s and Java’s “switch” statements, Scala’s
match expressions support a default or wildcard
“catch-all” pattern

Unlike them, only zero or one patterns can match

77

1@

€

®)

Match expressions

The traditional “switch” statement is limited to
matching by value

Scala’s match expressions are flexible and also enable
matching such diverse items as types, regular
expressions, numeric ranges, and data structure
contents
Moreover, match expressions are expressions

Hence, they can return values

78 =

e

10/18/2016

39

© ©
Match expressions: Syntax
<expression> match {
case <pattern match> => <expression>
[case...]
h
1 ©® L e e " @
® ®
Match expressions: Example
val test: Char ='a'
test match {
case 'a' => { println("Code associated with a") }
case 'b' => { println("Code associated with b") }
h
. ® .

10/18/2016

40

0

%)

Match expressions: Example #2

val test: Char =A'
test match {

case 'a'|'A' => { println("Code associated with a or
A”) }

case 'b'|‘B'|'c'|'C'| => { println("Code associated
with b, B, ¢ jor CH}

}

81

€

®)

Match expressions: Returned
values

Match expressions are expressions

Hence, they return values if the last expression of the
executed code is an expressions

82

10/18/2016

41

© ©
Match expressions: Example #3
val max = x >y match {
case true => X
case false =>y
b
@ S S S — ———— e — . @
® ®
Match expressions: Example #3
il :u rteh— l’:?hrir;aé%hoiaex;rﬁ:ziton is evaluated
case true => X
case false =>y
b
1 © . <

10/18/2016

42

@ @
Match expressions: Example #3
val s == > y T ich { If x>y is true then the value of x is returned
case true :
case false =>y
}
© e el e - s e el
® ©
Match expressions: Example #3
val max = x > y match { If x>y is false then the value of y is returned
case true => x
case false =
}

10/18/2016

43

® ®
Match expressions: Example #4
val day = "MON"
val kind = day match {
case "MONS L ERITESSE SWE DI
MEHUY | “"FREN == Syeekday’
case "SATH | SSEINE == tweckendt
}
println(kind)
1 ©® P e .
® ®
Match expressions: “Default”
value
There are two kinds of wildcard patterns you can use
in a match expression
Value binding and
Wildcard (aka “underscore”) operators
:©® &

10/18/2016

44

0

Match expressions: Value binding

With value binding the input to a match expression
is bound to a local value (immutable variable)

The local value can then be used in the body of the case
block.

Because the pattern contains the name of the value to
be bound there is no actual pattern to match against

Thus value binding is a wildcard pattern because it will
match any input value

89

1@

€

®)

Match expressions: Value binding

example

The following example sets status (integer) to
200 if the message is “Ok”

-1 otherwise

90

@’

10/18/2016

45

© ©
Match expressions: Value binding
example

val message = "Ok"
val status = message match {

case "Ok" => { println("matched Ok*

200
case other => { println(other+" matches nothing")
-1
H
H

println(status)

@ 91 @
® ®
Match expressions: Value binding
example

val message = "Ok"
val status = message match {

case "Ok" => { println("matched Ok*

200
case:> { println(other+" matches nothing")
-1
f
H
println(status) 5 3
other is set to the value of message if the
O previous cases are not matches 22 O

10/18/2016

46

0

Match expressions: Wildcard
operator

The wildcard cannot be accessed on the right side of
the arrow, unlike with value binding,

If you need to access the value of the wildcard in the case
block, consider using a value binding, or just accessing the
input to the match expression (if available)

93

€

Match expressions: Value binding
example

The following example sets status (integer) to
200 if the message is “Ok”

-1 otherwise

94

®)

10/18/2016

a7

® ®
Match expressions: Value binding
example
val message = "Ok"
val status = message match {
case "Ok" => { println("matched Ok*
200
case _ => { ptintln("matches nothing")
-1
i
H
println(status)
1 ©® P e .
® ®
Match expressions: Value binding
example
val message = "Ok"
val status = message match {
case "Ok" => { println("matched Ok*
200
caselz}:> { println("matches nothing")
L
i
_ i
s Wildcard operator
. ® .

10/18/2016

48

0

Match expression: Pattern guards

A pattern guard adds an if expression to a value-
binding pattern

It allows mixing conditional logic into match expressions

When a pattern guard is used the pattern will only be
matched when the if expression returns true

97

%)

€

Match expression: Pattern guard
example

val response: String = null
response match {
case s if (s != null) => println("Received "+s)
case s => println("Error! Received a null response")

}

98

®)

10/18/2016

49

0

Match expression: Pattern guard
example

val response: String = null

response match {
Caseif (s I= null) => println("Received "+s)
case:> ptintln("Error! Received a null response")

}

Value binding. The value of
response is assigned to s 2

%)

€

Match expression: Pattern guard
example

val response: String = null
Pattern guard. If the condition is true
response match { the code of this case is executed

case s|if (s != null)|=> println("Received "+s)

case s => println("Error! Received a null response")

}

100

®)

10/18/2016

50

0

Match expression: Pattern guard
example

val response: String = null
Pattern guard. If the condition is
response match { false the next cases are considered

case s|if (s = null)|=> println("Received "+s)

case s => println("Error! Received a null response")

}

101

%)

€

Match expression: Pattern guard
example

The following code is equivalent to the previous one
val response: String = null
response match {
case s if (s |= null) => println("Received "+s)
case _ => println("Error! Received a null response")

}

102

®)

10/18/2016

51

0

Match expression: Pattern guard
example

The following code is equivalent to the previous one
val response: String = null
response match {
case s if (s |= null) => println("Received "+s)
casE}:> println("Error! Received a null response")
h

Here the wildcard is sufficient

103

%)

€

Match expression: Matching
types

In Scala you can specify a matching also on the type
of the input

Java and C++ do not support this type of test

104

®)

(;)\,’

10/18/2016

52

© o
Match expression: Matching type
example

val list = List("a", 1, 'c', 34.5)
list(0) match {
case v: String => println("This is a string")
case v: Int => println("This is an integer")
case v: Char => println("This is a char")
case v => println("This is another type")
h
© e el e S e el
N7 =
Loops
© s

10/18/2016

53

0

for loop

The for loop in Scala is different with respect to those
of UG EE

The for loop in Scala always iterates over an input
collection

For each element e of the input collection, the block of
code associated with the for loop is executed

The for loop in Scala is a “functional for loop”

107

%)

€

for loop: Example 1

Scala: Java:

for 1 <-0to 3) { for (inti=0;i < 4;i++) {
/* code */ /* code */

b b

The expression “0 to 3”
defines a collection of

integers containing the
vahres 0 23

108

10/18/2016

54

© ©
for loegp: Example 2
Scala: Java:
for (s <- args) { for (String s : args) {
PG System.out.println(s);
h
args is the collection of
arguments of the
application. Each
element is a string
: @ e e 109 @
® ®
for loop: yield option
A for loop can return a collection
At each iteration, the last expression is the returned
value
Syntax
for (<identifier> <- <iterator>) yield {<expression>}
for (x <- 1 to 7) yield { s"Day $x:" }
: O 110

10/18/2016

55

0

for loop: yield option example

Returns (Rape S an ol e Do
val res=for (x <- 1 to 7) yield { "Day "+x }

Returns ((Even¥« Qdd? cEveni 2rekivent

val res=for (x <- 1 to 7) yield { if (x%2==0) {"Odd"}
elsc {Eveni o

111

€

while loop

The while loop in Scala is analogous to those of the
Java, C, C++ languages.

The while loop executes the code of block associated
with it as long as the evaluated condition is true

112

®)

10/18/2016

56

0

while loop

Scala:

while (expression==true)

{

Java:

while (expression==true)

{

113

€

®)

do-while loop

The do-while loop in Scala is analogous to those of

the Java, C, C++ languages.

The do-while loop executes the code of block
associated with it as long as the evaluated condition is

true

The code is always executed at least one time

114

10/18/2016

57

® ®
do-while loop
Scala: Java:
do { do {
}while (expression==true) }while (expression==true)
® ®
Console: Basic operations
Scala: Java:
Console.println(“Hello”) System.out.println(“Hello”);
or simply
println(“Hello”)
var 1:Int = 10 Integer 1=10;
println(“Value of i+ i) System.out.println(“Value of
ek

10/18/2016

58

® ®
Console: Basic operations
Scala: Java:
val line = Console.readLine() BufferedReader r = new
L BufferedReader(new
5 InputStreamRead(System.in)
val line = readLine() \ . ;
String line = r.readLine();
: @ RS a e aaee 117 @
® ®
Console: Read operations
The read* methods of the Console Object are used to
read data from the console in Scala
Console.readBoolean
Console.readChar
Console.readDouble
Console.readInt
Console.readLine
: O 118

10/18/2016

59

O

o

Read operations: Example

Console.println(“Insert your name”)
var name=Console.readLine()
Console.println(“Hi ”+name)
Console.println(“How old are your”)
var age=Console.readInt()
Console.println(“Do you like Scala?”)
var like=Console.readBoolean()

Console.println(“Name: ”+name + “ Age:” + age + “Like Scala: ”+like)

119

€

®)

Console: readf* methods

The methods readf, readfl, readf2, and readf3 can be
used to read multiple values at the same time

Console.readf(String)

Returns a list of values of type Any (List[Any])
Console.readf1 (String)

Returns one value of type Any
Console.readf2(String)

Returns two values of type Any (Any,Any)

120 ~

10/18/2016

60

0

%)

Console: readf* methods

The parameter of the readf* methods is a string that
specify the type of the expected input values

E.g

“{0} {1,number}” means that the expected values are a
string and then a number

“{0,number} {1number} {2}” means that the expected
values are two numbers and a string

An parse exception is generated if the input values are
not consistent with the expected data types

121

@

€

®)

Console: readf* methods

The main problem of readf, readfl, readf2, and readf3
is the type of the returned values

All the returned values are of type Any

Values must be casted to the correct data type

122

@’

10/18/2016

61

0

%)

Console: readf* methods:
Example

Console.println("Insert your name and age")
val (a,b)=Console.readf2("{0} {1,number}")
var name=a.toString

var age=b.toString.tolnt

Console.println("Name: "+name + " Age:" + age)

123

1@

€

®)

Console: readf* methods:
Example

Console.println("Insert your name and age")

val values: List[Any]=Console.readf(" {0} {1,number}")
var name=values(0).toString

var age=values(1).toString.tolnt

Console.println("Name: "+name + " Age:" + age)

124 =

10/18/2016

62

0

Console: Read operations

Since version 2 of Scala the Console.read* methods
are deprecated. However, the “equivalent” methods
scala.io.StdIn.read* are provided

scala.io.StdIn.readBoolean
scala.io.StdIn.readChar
scala.io.StdIn.readDouble
scala.io.StdIn.readInt

scala.io.StdIn.readLine

125

€

Read operations based on the
split method

Another approach is based on the split method of
String

split(“splitting character”) returns and Array of Strings

Also in this case a manual cast is needed

126

®)

10/18/2016

63

0

%)

Read operations based on the
split method: Example

Console.println("Insert your name and age")
val input=Console.readLine()

val vals: Array[String]=input.split(" ")

var name=vals(0).toString

var age=vals(1).toString.tolnt

Console.println("Name: "+name + " Age:" + age)

127

1@

€

®)

Read operations based on Java
Scanner

Scala can also use the Java java.util.Scanner class to
read data from the console

However, if the input does not match what you
expect and error/exception will be thrown

128 P

10/18/2016

64

©)

Read operations based on Java
Scanner: Example

val scanner=new java.util.Scanner(System.in)
print(“How old are your”)
val age=scanner.nextlnt()

Console.println(“You are ”+age+“years old”)

129

e

10/18/2016

65

