
10/18/2016

1

Scala

Data types and

Variables

10/18/2016

2

Basic Data Types

• Int

• Float

• Double

• Boolean

• Char

• String

3

Variables

• [private] var name[: type] = value

• var is the keyword of Scala that is used to define a
variable

• Variables must be initialized during their definition

• The type of the variable is implicitly inferred from
the initialization value if the type is not specified

• Variables are public if the keyword private is not
specified

4

10/18/2016

3

Variables: Examples

• var sentence = “Hello world”

• Implicit inference of the date type of sentence

• var sentence: String = “Hello world”

• Explicit definition of the date type of sentence

• sentence is a public variable of type String and its

initial value is “Hello world”

5

Variables: Examples

• var weight = 75

• var weight: Int = 75

• weight is a public variable of type Int and its initial

value is 75

6

10/18/2016

4

Variables: Examples

• private var weight = 75

• private var weight: Int = 75

• weight is a private variable of type Int and its initial

value is 75

7

Variables: Examples

• var price = 10.5

• var price: Double = 10.5

• price is a public variable of type Double and its initial

value is 10.5

8

10/18/2016

5

Variables: Examples

• var condition = true

• var condition: Boolean = true

• condition is a public variable of type Boolean and its

initial value is true

9

Variables: Examples

• var firstCharacter = ‘a’

• var firstCharacter: Char = ‘a’

• firstCharacter is a public variable of type Char and its

initial value is ‘a’

10

10/18/2016

6

Immutable Variables (or Values)

• [private] val name[: type] = value

• val is the keyword of Scala that is used to define
immutable variables (i.e., constants) also called values

• Immutable variables must be initialized during their
definition

• The type of immutable variables is implicitly inferred from
the initialization value if the type is not specified

• Immutable variables are public if the keyword private is
not specified

11

Immutable Variables: Examples

• val sentence = “Hello world”

• Implicit inference of the date type of sentence

• val sentence: String = “Hello world”

• Explicit definition of the date type of sentence

• sentence is a public immutable variable of type String

and its initial value is “Hello world”

12

10/18/2016

7

Standard operators

• Mathematical operators

• +, -, *, /, %

• Boolean operators

• |, &, !

13

Standard operators: Examples

• var num = 10

• var den = 3

• var ris = 10/3

• var ris = 10%3

• var text = “Hello World”

• text = text + “ Paolo”

14

10/18/2016

8

Strings

• Scala’s String is built on Java’s String

• Scala’s String has also some additional features

• Multiline literals

• String interpolation

15

Strings: Examples

• Use of double quotes and special characters escaped

with backslash

val hello = “Hello There” /* Hello There */

val signature = “With regards, \nYour friend”

/*

With Regards,

Your friend

*/ 16

10/18/2016

9

Strings: Examples

• String concatenation (or string addition)

val hello = “Hello, “+ “World” /* Hello, World */

• String comparison

val matched = (hello == “Hello, World”) /* true */

• Unlike Java, in Scala the equals operator (==) compares the

contents of the Strings

17

Multiline Strings

• A multiline String can be created using triple-quotes

• Multiline Strings are literal, and do not recognize the use of

backslashes, i.e., they do not recognize special characters

val greeting = """She suggested reformatting the file

by replacing tabs (\t) with newlines (\n);

"Why do that?", he asked. """

18

10/18/2016

10

String interpolation

• Building a string based on other variables/values can

be do with string addition

• E.g.,

val approx = 355/113f

/* approx: Float = 3.141593 */

println("Pi, using 355/113, is about " + approx + ".")

/* Pi, using 355/113, is about 3.141593. */

19

String interpolation

• String interpolation is another way to combine

variables/values inside a string

• The Scala notation for is an “s” prefix added before

the first double quote of the string

• The dollar sign operator $ (with optional braces) can

be used to insert references to variables/values

20

10/18/2016

11

String interpolation: Example

val approx = 355/113f

/* approx: Float = 3.141593 */

println(s"Pi, using 355/113, is about ${approx}.")

/* Pi, using 355/113, is about 3.141593. */

21

Strings: Other particular

operations

• Repeat the same sequence of characters multiple

times

val repeatHi="Hi "*5

println(repeatHi)

val str1=“Paolo ”

val num=10

val rep=str1*num

println(rep)
22

10/18/2016

12

Regular expressions

• As many other languages, Scala supports regular

expressions

• A regular expression is a string of characters and

punctuation that represents a search pattern

• The format is the same used by the Java class

java.util.regex.Pattern

23

Use of regular expressions:

Example

• matches

• It is used to check if the content of String matches the

provided regular expression

var sentence= "Test matching operation"

var res: Boolean =sentence.matches("Test .*")

println(res)

24

10/18/2016

13

Use of regular expressions:

Example

• replaceAll

• Replaces all matches of the regular expression with the

specified replacement text

var sentence= "milk, tea, muck"

var res: String = sentence.replaceAll("m[^]+k",

"coffee")

println(res)

25

Use of regular expressions:

Example

• replaceFirst

• Replaces the first match of the regular expression with the

specified replacement text

var sentence= "milk, tea, muck"

var res: String = sentence.replaceFirst("m[^]+k",

"coffee")

println(res)

26

10/18/2016

14

The Scala data type hierarchy

27

Common operations

• The following operations are available on all types

• asInstanceOf[<type>]

• Converts the value to a value of the desired type

• Causes an error if the value is not compatible with the new

type.

• E.g., 5.asInstanceOf[Long]

28

10/18/2016

15

Common operations

• getClass

• Returns the type (i.e., the class) of a value

• E.g., (7.0 / 5).getClass

29

Common operations

• isInstanceOf

• Returns true if the value has the given type

• E.g., (5.0).isInstanceOf[Float]

30

10/18/2016

16

Common operations

• to<type>

• Conversion functions to convert a value to a compatible

• E.g., 20.toByte

• 47.toFloat

31

Common operations

• toString

• Renders the value to a String

• E.g., (3.0 / 4.0).toString

32

10/18/2016

17

Cast: Data type conversion

• asInstanceOf[<type>] and the to* methods can be

used to convert data from one data type to another

• Obviously only if the content of the “input” variable/value

is compatible with the “output” data type

• The to* methods are preferred

33

Cast: Examples

var longAge: Long = 40

var intAge: Int = longAge.toInt

print(longAge+"---"+intAge)

--

var stringAge: String = "40"

var intAge=stringAge.toInt

print(stringAge+"---"+intAge)
34

10/18/2016

18

Arrays, Lists, Maps,

Tuples

Basic operations

Collections and complex data

types in Scala

• Array

• List

• Map

• Tuple

36

10/18/2016

19

Arrays

• Scala provides the Array data type

• Scala supports

• Homogeneous arrays

• All the elements of the array are associated with the same data

type

• Heterogeneous arrays

• The elements of the array belong to different data types

37

Homogeneous arrays: Example

• Definition of an array of integers containing the

values 1, 2, 3

val numbers = Array(1, 2, 3)

• numbers is of type Array[Int]

38

10/18/2016

20

Homogeneous arrays: Example

• Print on the console the value of the first element

val numbers = Arrays(1, 2, 3)

println(numbers(0))

39

Heterogeneous arrays: Example

• Definition of an array containing integers and strings

val mix = Array(1, “Hello”, “World”, 10)

• mix is of type Array[Any]

40

10/18/2016

21

Collections: List

• Scala provides the List data type

• Scala supports

• Homogeneous lists

• All the elements of the list are associated with the same data

type

• Heterogeneous lists

• The elements of the list belong to different data types

41

Homogeneous lists: Example

• Definition of a list of integers containing the values 1,

2, 3

val numbers = List(1, 2, 3)

or

val numbers = 1 :: 2 :: 3 :: Nil

• numbers is of type List[Int]

42

10/18/2016

22

Homogeneous lists: Example

• Print on the console the value of the first element

val numbers = List(1, 2, 3)

println(numbers(0))

43

Heterogeneous lists: Example

• Definition of a list containing integers and strings

val mix = List(1, “Hello”, “World”, 10)

or

val mix = 1 :: “Hello” :: “World” :: 10 :: Nil

• mix is of type List[Any]

44

10/18/2016

23

Concatenation of lists

• Concatenate lists

• val res = list1 ::: list2

• Or

• val res = List.concat(list1, list2)

• List.concat() receives as arguments two or more lists

45

Collections: Map

• Scala provides the Map data type

• Map is used to maintain the mapping between keys

and values

• Each key is associated with only one value

46

10/18/2016

24

Maps

• Add a new pair key -> value

• mapvariable += newkey -> newvalue

• Retrieve the value associated with a key

• mapvariable(key)

• or

• mapvariable.get(key).get

• Default value for missing keys

• mapvariable.get(key).getOrElse(default value)
47

Maps: Example

• Definition of a map variable that maps integers (key)

to strings (values)

/* Define the Map and insert the first key -> value pair

*/

val mapper = Map(1 -> “Hello”)

/* Add a new pair */

mapper += 2 -> “World”

println(mapper(1)) 48

10/18/2016

25

Maps: Example

• Definition of a map variable that maps integers (key)

to strings (values)

/* Define an empty Map of type Map[Int, String] */

val mapper: Map[Int, String] = Map()

/* Add two new pairs */

mapper += 1 -> “Hello”

mapper += 2 -> “World”

println(mapper(1)) 49

Maps: Example #2

• Definition of a map variable that maps string (key) to

strings (values)

val stateCapitals = Map("Alabama" -> "Montgomery",

"Alaska" -> "Juneau")

println("Alabama: " + stateCapitals("Alabama")

.getOrElse("Unknown"))

println("Italy: " +

stateCapitals.get("Italy").getOrElse("Unknown"))

50

10/18/2016

26

Tuples

• Scala has a specific data type that is used to represent

tuples

• Tuples are groups of N items

• Elements are unrelated to each other. The data types can be

different

• They are useful to return a set of values from a method

without defining a new class od structure

• Pay attention that the items of tuples are immutable

51

Tuples

• Definition of tuples

• var name=(comma separated list of items)

• Retrieval of the N-th item

• name._N

52

10/18/2016

27

Tuples: Examples

• Scala:

val tuple: Tuple2[Int,

String] = (1, “apple”)

val quadruple =

(2, “orange”, 0.5d, false)

• Java:

Pair<Integer, String> tuple

= new Pair<Integer,

String>(1, “apple”)

Quadruples: No equivalent

in Java

53

Tuples: Examples

/* Define a tuple with three items */

val profile=(“Paolo”, “Garza”, 40)

println(“Name:” + profile._1)

println(“Surname:” + profile._2)

println(“Age:” + profile._3)

54

10/18/2016

28

Generics in Scala

• Analogously to Java, also Scala supports generics

55

Generics: Examples

• Scala:

List[String]

List[Int]

Map[Int, String]

…

• Java:

List<String>

List<Integer>

Map<Int, String>

56

10/18/2016

29

Expressions

Expressions

• Expression

• A unit of code that returns a value

• One or more lines of code can be considered an expression

if they are collected together using curly braces

• This is known as expression block

58

10/18/2016

30

Expressions: Example

• “hello”

• Is a very simple expression

• “hel”+”lo”

• Is another very simple expression

• As we already did, expressions can be used to assign

values to variables and immutable variables (values)

• val message=“hello”

59

Expression blocks

• An expression block is a sequence of one or more

lines of code

• An expression has its own scope, and may contain

values and variables local to the expression block

• The last expression in the block is the return value for

the entire block

60

10/18/2016

31

Expression blocks: Example

• Example with expressions containing only one line of

code

val x = 5 * 20;

val amount = x + 10

• Example with an expression block with multiple lines

of code

val amount = {val x = 5 * 20; x + 10 }

• The value of amount is the same in both cases 61

Expression blocks: Example

• Example with expressions containing only one line of

code

val x = 5 * 20;

val amount = x + 10

• Example with an expression block with multiple lines

of code

val amount = {val x = 5 * 20; x + 10 }

• The value of amount is the same in both cases

x is visible only inside the expression block

62

10/18/2016

32

Expression blocks: Example

• Example with expressions containing only one line of

code

val x = 5 * 20;

val amount = x + 10

• Example with an expression block with multiple lines

of code

val amount = {val x = 5 * 20; x + 10 }

• The value of amount is the same in both cases

This is the returned value (expression)

63

Expression blocks: Example

• Example with an expression block with multiple lines

of code

val amount = {val x = 5 * 20; x + 10 }

• Is equivalent to

val amount = {val x = 5 * 20

x + 10 }

64

10/18/2016

33

Expression blocks: Example

• Example with an expression block with multiple lines

of code

val amount = {val x = 5 * 20; x + 10 }

• Is equivalent to

val amount = {val x = 5 * 20

x + 10 } This is the returned value (expression)

65

Expression blocks: Example

• Example of a three-deep nested expression block

val res = { val a = 1; { val b = a * 2; { val c = b + 4; c }

} }

66

10/18/2016

34

Expression blocks: Example

• Example of a three-deep nested expression block

val res = { val a = 1; { val b = a * 2; { val c = b + 4; c }

} }

This is the returned value (expression)

67

Conditional

expressions

10/18/2016

35

if-then-else

• if-then-else in Scala is analogous to those of the Java,

C, C++ languages

• However, it is also an expression

• The if expression evaluates a Boolean expression

• If the result of the Boolean expression is equal to true a

block of code is executed

• Otherwise the block of code associated with the else part

of the statement is executed

69

if-then-else

• Scala:

if (test) {

/* code */

} else {

...

}

• Java:

if (test) {

...

} else {

...

}

70

10/18/2016

36

if-then-else

• Scala:

if (test) {

...

} else if (test2) {

...

} else {

...

}

• Java:

if (test) {

...

} else if (test2) {

...

} else {

...

}

71

if-then-else as an expression

• if-then-else in Scala is also an expression

• If the Boolean condition of the if-then-else is true

then last expression of the if expression block is the

returned value

• Otherwise, the last expression of the else block is the

returned value

72

10/18/2016

37

if-then-else as an expression:

Example

val x=10

val y=20

val max = {if (x>y) x else y}

println(max)

73

if-then-else as an expression:

Example#2

val x=10

val y=20

val max = { if (x>y) {

println(x +">"+ y)

x }

else {

println(x +"<="+ y)

y }

}

println(max)

74

10/18/2016

38

Match expressions

Match expressions

• Match expressions are like the “switch” statements in

Java and C++

• A single input item is evaluated and the first

pattern that is “matched” is executed and its

value returned

76

10/18/2016

39

Match expressions

• Like C’s and Java’s “switch” statements, Scala’s

match expressions support a default or wildcard

“catch-all” pattern

• Unlike them, only zero or one patterns can match

77

Match expressions

• The traditional “switch” statement is limited to

matching by value

• Scala’s match expressions are flexible and also enable

matching such diverse items as types, regular

expressions, numeric ranges, and data structure

contents

• Moreover, match expressions are expressions

• Hence, they can return values

78

10/18/2016

40

Match expressions: Syntax

<expression> match {

case <pattern match> => <expression>

[case...]

}

79

Match expressions: Example

val test: Char ='a'

test match {

case 'a' => { println("Code associated with a") }

case 'b' => { println("Code associated with b") }

}

80

10/18/2016

41

Match expressions: Example #2

val test: Char =‘A'

test match {

case 'a'|'A' => { println("Code associated with a or

A") }

case 'b'|‘B'|'c'|'C'| => { println("Code associated

with b, B, c, or C") }

}

81

Match expressions: Returned

values

• Match expressions are expressions

• Hence, they return values if the last expression of the

executed code is an expressions

82

10/18/2016

42

Match expressions: Example #3

val max = x > y match {

case true => x

case false => y

}

83

Match expressions: Example #3

val max = x > y match {

case true => x

case false => y

}

The match expression is evaluated

on this Boolean test

84

10/18/2016

43

Match expressions: Example #3

val max = x > y match {

case true => x

case false => y

}

If x>y is true then the value of x is returned

85

Match expressions: Example #3

val max = x > y match {

case true => x

case false => y

}

If x>y is false then the value of y is returned

86

10/18/2016

44

Match expressions: Example #4

val day = "MON"

val kind = day match {

case "MON" | "TUE" | "WED" |

"THU" | "FRI" => "weekday"

case "SAT" | "SUN" => "weekend"

}

println(kind)

87

Match expressions: “Default”

value

• There are two kinds of wildcard patterns you can use

in a match expression

• Value binding and

• Wildcard (aka “underscore”) operators

88

10/18/2016

45

Match expressions: Value binding

• With value binding the input to a match expression

is bound to a local value (immutable variable)

• The local value can then be used in the body of the case

block.

• Because the pattern contains the name of the value to

be bound there is no actual pattern to match against

• Thus value binding is a wildcard pattern because it will

match any input value

89

Match expressions: Value binding

example

• The following example sets status (integer) to

• 200 if the message is “Ok”

• -1 otherwise

90

10/18/2016

46

Match expressions: Value binding

example

val message = "Ok"

val status = message match {

case "Ok" => { println("matched Ok“

200

case other => { println(other+" matches nothing")

-1

}

}

println(status)

91

val message = "Ok"

val status = message match {

case "Ok" => { println("matched Ok“

200

case other => { println(other+" matches nothing")

-1

}

}

println(status)

Match expressions: Value binding

example

other is set to the value of message if the

previous cases are not matches 92

10/18/2016

47

Match expressions: Wildcard

operator

• The wildcard cannot be accessed on the right side of

the arrow, unlike with value binding.

• If you need to access the value of the wildcard in the case

block, consider using a value binding, or just accessing the

input to the match expression (if available)

93

Match expressions: Value binding

example

• The following example sets status (integer) to

• 200 if the message is “Ok”

• -1 otherwise

94

10/18/2016

48

Match expressions: Value binding

example

val message = "Ok"

val status = message match {

case "Ok" => { println("matched Ok“

200

case _ => { println("matches nothing")

-1

}

}

println(status)

95

val message = "Ok"

val status = message match {

case "Ok" => { println("matched Ok“

200

case _ => { println("matches nothing")

-1

}

}

println(status)

Match expressions: Value binding

example

Wildcard operator
96

10/18/2016

49

Match expression: Pattern guards

• A pattern guard adds an if expression to a value-

binding pattern

• It allows mixing conditional logic into match expressions

• When a pattern guard is used the pattern will only be

matched when the if expression returns true

97

Match expression: Pattern guard

example

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case s => println("Error! Received a null response")

}

98

10/18/2016

50

Match expression: Pattern guard

example

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case s => println("Error! Received a null response")

}

Value binding. The value of

response is assigned to s 99

Match expression: Pattern guard

example

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case s => println("Error! Received a null response")

}

Pattern guard. If the condition is true

the code of this case is executed

100

10/18/2016

51

Match expression: Pattern guard

example

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case s => println("Error! Received a null response")

}

Pattern guard. If the condition is

false the next cases are considered

101

Match expression: Pattern guard

example

The following code is equivalent to the previous one

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case _ => println("Error! Received a null response")

}

102

10/18/2016

52

Match expression: Pattern guard

example

The following code is equivalent to the previous one

val response: String = null

response match {

case s if (s != null) => println("Received "+s)

case _ => println("Error! Received a null response")

}
Here the wildcard is sufficient

103

Match expression: Matching

types

• In Scala you can specify a matching also on the type

of the input

• Java and C++ do not support this type of test

104

10/18/2016

53

Match expression: Matching type

example

val list = List("a", 1, 'c', 34.5)

list(0) match {

case v: String => println("This is a string")

case v: Int => println("This is an integer")

case v: Char => println("This is a char")

case v => println("This is another type")

}
105

Loops

10/18/2016

54

for loop

• The for loop in Scala is different with respect to those

of C, C++

• The for loop in Scala always iterates over an input

collection

• For each element e of the input collection, the block of

code associated with the for loop is executed

• The for loop in Scala is a “functional for loop”

107

for loop: Example 1

• Scala:

for (i <- 0 to 3) {

/* code */

}

• The expression “0 to 3”

defines a collection of

integers containing the

values 0, 1, 2, 3

• Java:

for (int i = 0; i < 4; i++) {

/* code */

}

108

10/18/2016

55

for loop: Example 2

• Scala:

for (s <- args) {

println(s)

}

• args is the collection of

arguments of the

application. Each

element is a string

• Java:

for (String s : args) {

System.out.println(s);

}

109

for loop: yield option

• A for loop can return a collection

• At each iteration, the last expression is the returned

value

• Syntax

• for (<identifier> <- <iterator>) yield {<expression>}

• for (x <- 1 to 7) yield { s"Day $x:" }

110

10/18/2016

56

for loop: yield option example

• Returns (“Day 1”, “Day 2”, .. , “Day 7”,)

val res=for (x <- 1 to 7) yield { "Day "+x }

• Returns (“Even”, “Odd”, “Even”, .., “Even”,)

val res=for (x <- 1 to 7) yield { if (x%2==0) {"Odd"}

else {“Even"} }

111

while loop

• The while loop in Scala is analogous to those of the

Java, C, C++ languages.

• The while loop executes the code of block associated

with it as long as the evaluated condition is true

112

10/18/2016

57

while loop

• Scala:

while (expression==true)

{

...

}

• Java:

while (expression==true)

{

...

}

113

do-while loop

• The do-while loop in Scala is analogous to those of

the Java, C, C++ languages.

• The do-while loop executes the code of block

associated with it as long as the evaluated condition is

true

• The code is always executed at least one time

114

10/18/2016

58

do-while loop

• Scala:

do {

...

}while (expression==true)

• Java:

do {

...

}while (expression==true)

115

Console: Basic operations

• Scala:

Console.println(“Hello”)

or simply

println(“Hello”)

var i:Int = 10

println(“Value of i:”+ i)

• Java:

System.out.println(“Hello”);

Integer i=10;

System.out.println(“Value of

i:”+ i)
116

10/18/2016

59

Console: Basic operations

• Scala:

val line = Console.readLine()

or simply

val line = readLine()

• Java:

BufferedReader r = new

BufferedReader(new

InputStreamRead(System.in)

String line = r.readLine();

117

Console: Read operations

• The read* methods of the Console Object are used to

read data from the console in Scala

• Console.readBoolean

• Console.readChar

• Console.readDouble

• Console.readInt

• Console.readLine

• …
118

10/18/2016

60

Read operations: Example

Console.println(“Insert your name”)

var name=Console.readLine()

Console.println(“Hi ”+name)

Console.println(“How old are you?”)

var age=Console.readInt()

Console.println(“Do you like Scala?”)

var like=Console.readBoolean()

Console.println(“Name: ”+name + “ Age:” + age + “Like Scala: ”+like)

119

Console: readf* methods

• The methods readf, readf1, readf2, and readf3 can be

used to read multiple values at the same time

• Console.readf(String)

• Returns a list of values of type Any (List[Any])

• Console.readf1(String)

• Returns one value of type Any

• Console.readf2(String)

• Returns two values of type Any (Any,Any)
120

10/18/2016

61

Console: readf* methods

• The parameter of the readf* methods is a string that

specify the type of the expected input values

• E.g.

• “{0} {1,number}” means that the expected values are a

string and then a number

• “{0,number} {1,number} {2}” means that the expected

values are two numbers and a string

• An parse exception is generated if the input values are

not consistent with the expected data types
121

Console: readf* methods

• The main problem of readf, readf1, readf2, and readf3

is the type of the returned values

• All the returned values are of type Any

• Values must be casted to the correct data type

122

10/18/2016

62

Console: readf* methods:

Example

Console.println("Insert your name and age")

val (a,b)=Console.readf2("{0} {1,number}")

var name=a.toString

var age=b.toString.toInt

Console.println("Name: "+name + " Age:" + age)

123

Console: readf* methods:

Example

Console.println("Insert your name and age")

val values: List[Any]=Console.readf("{0} {1,number}")

var name=values(0).toString

var age=values(1).toString.toInt

Console.println("Name: "+name + " Age:" + age)

124

10/18/2016

63

Console: Read operations

• Since version 2 of Scala the Console.read* methods

are deprecated. However, the “equivalent” methods

scala.io.StdIn.read* are provided

• scala.io.StdIn.readBoolean

• scala.io.StdIn.readChar

• scala.io.StdIn.readDouble

• scala.io.StdIn.readInt

• scala.io.StdIn.readLine

• … 125

Read operations based on the

split method

• Another approach is based on the split method of

String

• split(“splitting character”) returns and Array of Strings

• Also in this case a manual cast is needed

126

10/18/2016

64

Read operations based on the

split method: Example

Console.println("Insert your name and age")

val input=Console.readLine()

val vals: Array[String]=input.split(" ")

var name=vals(0).toString

var age=vals(1).toString.toInt

Console.println("Name: "+name + " Age:" + age)

127

Read operations based on Java

Scanner

• Scala can also use the Java java.util.Scanner class to

read data from the console

• However, if the input does not match what you

expect and error/exception will be thrown

128

10/18/2016

65

Read operations based on Java

Scanner: Example

val scanner=new java.util.Scanner(System.in)

print(“How old are you?”)

val age=scanner.nextInt()

Console.println(“You are ”+age+“years old”)

129

