Developing Storm
Applications

A trivial running example topology

Spout @

This spout emits a stream of This bolt multiplies each
random integer numbers between — element of the input stream
oand 9g9. by 2 and prints the result on
It emits one number every 100ms. the standard output

(.., 74, 10, 5, ..) = (.., 148, 20, 10, ..)

24/05/2017

24/05/2017

Developing a Storm application

You must implement

One class for each spout of your topology

= However, in real applications, you typically use an
existing spout (Kafka spout, Redis spout, etc)

One class for each bolt of your topology

One class, with the main method, to define and
submit the topology

Implementing Spouts

. 00 s

Implementing Spouts

For each spout you must specify

The format of the emitted tuples
The names of the fields

How tuples are generated

Implementing Spouts

Spouts implement the BaseRichSpout abstract
class

BaseRichSpout implements the following interfaces
Serializable, ISpout, IComponent, IRichSpout
The methods to be implemented are
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector)

public void
declareOutputFields(OutputFieldsDeclarer declarer)

public void nextTuple()

24/05/2017

24/05/2017

Implementing Spouts

public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector)

Itis called when a task for this component is initialized within a
worker on the cluster

It provides the spout with the environment in which it executes
Parameters
conf
The Storm configuration for this spout

context
It can be used to get information about this task’s place within the topology,
including the task id and component id of this task
collector:
The collector is used to emit tuples from this spout
Tuples can be emitted at any time, including the open and close methods

The collector is thread-safe and should be saved as an instance variable of this
spout object

Implementing Spouts

public void
declareOutputFields(OutputFieldsDeclarer
declarer)
Declares the output schema for all the streams of
this spout
An spout can emit more than one stream
Parameter

declarer

It is used to declare output stream ids, output fields, and whether
or not each output stream is a direct stream

Implementing Spouts

public void nextTuple()

It is used to emit the next tuple(s) of the stream(s)
generated by this spout by calling the emit
method on the output collector

When this method is called, Storm is requesting
that the Spout emits tuples to the output collector
This method should be non-blocking

So if the Spout has no tuples to emit, this method
should return

Running example Spout

package...
Import ...

@SuppressWarnings("serial")

public class EmitRandomIntSpout extends BaseRichSpout {
private SpoutOutputCollector collector;
private Random rand;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector
collector) {

this.collector = collector;

this.rand = new Random();

}

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("intValue"));

}

10

24/05/2017

Running example Spout

package....
Import ...

@SuppressWarnings("serial")

public class EmitRandomIntSpout extends BaseRichSpout {
private SpoutOutputCollector collector;
private Random rand;

@Override

public void open(Map conf, TopologyContext context, SpoutOutputCollector
collector) {

this.collector = collector;

Store the output
. : i collector in an
instance variable

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("intValue"));

}

11

Running example Spout

package...
Import ...

@SuppressWarnings("serial")

public class EmitRandomIntSpout extends BaseRichSpout {
private SpoutOutputCollector collector;
private Random rand;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector
collector) {
this.collector = collector;
this.rand = new Random(); Declare the
schema of the

emitted tuples

}

@Override
public voi

i arer declarer) {
declarer.declare(new Fields("intValue"));

12

24/05/2017

Running example Spout

@Override

public void nextTuple() {
Utils.sleep(100);
collector.emit(new Values(rand.nextint(100)));

13

Running example Spout

@Override
public void nextTuple() {
Utils.sleep(200);
| collector.emit(new Values(rand.nextInt(100))); \

} Emit a new tuple
} by using the emit
method and the

Values class

14

24/05/2017

24/05/2017

Implementing Bolts

EE— 0000 oo

Implementing Bolts

For each bolt you must specify
How the input tuples are processed

The format of the emitted tuples

= The final bolt of a path of the topology does not emit a
new stream of tuples

= For the final bolts the tuple format is not specified

Implementing Bolts

Bolts implement the BaseRichBolt abstract class

BaseRichBolt implements the following interfaces
Serializable, IBolt, IComponent, IRichBolt
The methods to be implemented are

public void prepare(Map conf, TopologyContext
context, OutputCollector collector)

public void declareOutputFields(OutputFieldsDeclarer
declarer)

public void execute(Tuple tuple)

17

Implementing Bolts

public void prepare(Map conf, TopologyContext context,
OutputCollector collector)

Itis called when a task for this component is initialized within a
worker on the cluster

It provides the bolt with the environment in which it executes

Parameters

conf
The Storm configuration for this spout

context
It can be used to get information about this task’s place within the topology,
including the task id and component id of this task

collector:
The collector is used to emit tuples from this bolt
Tuples can be emitted at any time, including the prepare and cleanup methods
The collector is thread-safe and should be saved as an instance variable of this
bolt object

18

24/05/2017

Implementing Bolts

public void
declareOutputFields(OutputFieldsDeclarer
declarer)
Declares the output schema for all the streams of
this bolt
A bolt can emit zero or many streams
Parameter

declarer

It is used to declare output stream ids, output fields, and whether
or not each output stream is a direct stream

19

Implementing Bolts

public void execute(Tuple tuple)
It is used to process a single tuple of input

The Tuple object contains metadata on it about
which component/stream/task it came from

The values of the Tuple can be accessed using the
getValue* methods

The Bolt does not have to process the Tuple
immediately

It is perfectly fine to hang onto a tuple and process it
later (for instance, to do an aggregation or a join)

20

24/05/2017

10

24/05/2017

Running example Bolt

package....
Import ...

@SuppressWarnings("serial")
public class MultiplyBy2Bolt extends BaseRichBolt {

private OutputCollector collector;

@Override

public void prepare(Map conf, TopologyContext context, OutputCollector
collector) {

this.collector = collector;
}

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

21

Running example Bolt

package...
Import ...

@SuppressWarnings("serial")
public class MultiplyBy2Bolt extends BaseRichBolt {

private OutputCollector collector;

@Override

public void prepare(Map conf, TopologyContext context, OutputCollector
collector) {

lthis.collector = collector; |<\ Store the output
}

collectorin an
) instance variable
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

22

11

24/05/2017

Running example Bolt

package....
Import ...

The schema of the

@SuppressWarnings("serial") output tuples is not
public class MultiplyBy2Bolt extends BaseRichBolt { defined because this

private OutputCollector collector; bolt does not emit a
new stream

@Override

public void prepare(Map conf, TopologyContext context
collector) {

this.collector = collector;
}

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

tputCollector

23

Running example Bolt

@Override

public void execute(Tuple tuple) {
// Print the computed value on the standard output
System.out.printIn(tuple.getintegerByField("intValue") * 2);

24

12

Running example Bolt

@0Override

public void execute(Tuple tuple) {
/] Print the computed value on the standard output
System.out.printIn(tuple.getintegerByField("intValue") * 2);

} \

Process the
current tuple

25

Implementing Topologies

0 oo

24/05/2017

13

Implementing Topologies

For each topology you must specify
Which spouts and bolts are part of the topology
How spouts and bolts are connected

Which stream grouping is used for each stream

It depends on the pair (emitter spout/bolt, consumer bolt)
and the performed stream transformation/processing

You must specify the initial parallelism of the
topology

Pay attention: The maximum number of tasks cannot be
changed at runtime

27

Implementing Topologies

Topologies are created and configured by
means of the TopologyBuilder class
The main methods to be used are

public SpoutDeclarer setSpout(String id,
IRichSpout spout)

public BoltDeclarer setBolt(String id, IRichBolt
bolt)

public StormTopology createTopology()

28

24/05/2017

14

Implementing Topologies

public SpoutDeclarer setSpout(String id,
IRichSpout spout, Number parallelism_hint)

It is used to add a spout to the topology

Parameters
id
The id of this component
Usually it is the “name” of the spout

This id is referenced by other components that want to consume this
spout’s outputs

spout

An instance of the class implementing this spout
parallelism_hint

Number of executors that should be assigned to execute this spout

29

Implementing Topologies

public BoltDeclarer setBolt(String id, IRichBolt
bolt, Number parallelism_hint)

It is used to add a bolt to the topology

Parameters
id
The id of this component
Usually it is the “name” of the bolt

This id is referenced by other components that want to consume this
bolt's outputs

bolt

An instance of the class implementing this bolt
parallelism_hint

Number of executors that should be assigned to execute this bolt

30

24/05/2017

15

Implementing Topologies

Use the object returned by setBolt to declare the
inputs of the bolt
Specify the input streams and the stream grouping
technique
Use one of the following methods of the
BoltDeclarer class
shuffleGrouping(..), localOrShuffleGrouping(..),
fieldsGrouping(..), partialKeyGrouping(..),
allGrouping(..), globalGrouping(..), noneGrouping(..),
directGrouping(..), customGrouping(..)

Implementing Topologies

public StormTopology createTopology()

It is used to create an instance of the defined
topology

24/05/2017

16

Implementing Topologies

public static void submitTopology(String name,
Map stormConf, StormTopology topology) of
StormSubmitter is used to submit the topology
Submits a topology to run on the cluster
A topology runs forever or until explicitly killed.
Parameters
name

name of the topology
stormConf

the topology-specific configuration
Topology

An instance of the topology to execute

33

Running example Topology

package...
Import ...

public class MultiplyBy2Topology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlintegers", new EmitRandomIntSpout(), 1);
builder.setBolt("multiply", new MultiplyBy2Bolt(), 2)
.shuffleGrouping("streamIntegers");

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

34

24/05/2017

17

Running example Topology

kage ...
Fri;oar??. Create a topology
builder
public class MultiplyBy2Topology {

public static void main(String[] args) throws Exception {

| TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);
builder.setBolt("multiply", new MultiplyBy2Bolt(), 2)
.shuffleGrouping("streamIntegers");

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

35

Running example Topology

package...

Set the spout
Import ... Specify:
. . -Name
blic class MultiplyBy2Topol
public class MultiplyBy2Topology { - Instance of the spout
public static void main(String[] args) throws Exception { | - Number of executors

TopologyBuilder builder = new TopologyBuil ;

builder.setSpout(“streamintegers”,
Ui i

new EmitRandomintSpout(), 1);
- Ultiply”, new MUItiplyBy
.shuffleGrouping("streamIntegers");

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

36

24/05/2017

18

Running example Topology

kage ...
Fr‘ra;:)oarst;?. Set the bolt
Specify:
public class MultiplyBy2Topology { -Name

. - Instance of the bolt
blic stat d St th E t
publi ic void main(String[] args) throws Exception { - Number of executors

TopologyBuilder builder = new TopologyBuilder();

builder.setBolt("multiply", new MultiplyBy2Bolt
shufffeGrouping(“streamintegers");

0, 2)

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

37

Running example Topology

package ... Subscribe the bolt to
Import ... the streaminteger
ublic class MultiplyBy2Topology { spout
P PlyEy2Topolody - Use the Shuffle
public static void main(String[] args) throws Exception { | Grouping technique

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlintegers", new EmitRandopathtSpout(), 1);
1 I : | " H

builder.setBolt("multi new MultiplyBy2Bolt
‘ .shuffleGrouping("streamIntegers");

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

38

24/05/2017

19

24/05/2017

Running example Topology

package....
Import ...

public class MultiplyBy2Topology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);
builder.setBolt("multiply", new MultiplyBy2Bolt(), 2)
.shuffleGrouping("streamIntegers");

Con}fig conf = n$V\I/ Config(); Specify the number of workers
nf.setD ;
conf setNumWorkers(3); used to deploy the topology

39

Running example Topology

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,

builder.createTopology());
}else §

System.out.printIn("storm jar example-1.0.0.jar
storm_example.multiplyby2 <topology name>");

40

20

24/05/2017

Running example Topology

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,
builder.createTopology());

}else §
System.out.printIn("storm jar‘m\mpkqo\wi;
storm_example.multiplybya <tondisayv names™.

Submit the topology
Specify:

- Name

- Environment
Configuration

- An instance of the
topology

Reliable vs unreliable spouts

. 00 s

21

Reliable vs unreliable spouts

Spouts can be reliable or unreliable
Areliable spout is capable of replaying a tuple
if it failed to be processed by Storm
An unreliable spout forgets about the tuple as
soon as it is emitted
It does not reemit the tuple if it processing fails
Unreliable spouts are faster
Use them if you need high-performance and you
can “lose” some tuples

43

Reliable vs unreliable spouts

Each reliable spout maintains a queue with
the emitted tuples

The ack() and fail() methods of
BaseRichSpout are used to update the
content of the queue

ack is used to remove from the queue a tuple that
has been fully processed

fail is usually used to resend a tuple that has not
been properly processed

44

24/05/2017

22

24/05/2017

Ack and Fail methods

BaseRichSpout has also the following
methods

void ack(Object msgld)

This method of the spout is invoked when the tuple
emitted by this spout with the msgld identifier has been
fully processed

void fail(Object msgld)

This method of the spout is invoked when the tuple
emitted by this spout with the msgld identifier has failed
to be fully processed

45

Reliable implementation of the

running example topology: Spout

package ...
import ...

/**
* Emits a random integer every 100 ms.
*

@SuppressWarnings("serial")
public class EmitRandomIntSpoutReliable extends BaseRichSpout {

private SpoutOutputCollector collector;
private Random rand;
private Integer msgld;
HashMap<Integer, Integer> sentTuples;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector= collector;
this.msgld = o;
this.rand = new Random();
this.sentTuples = new HashMap<Integer, Integer>();

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("intValue"));
}

46

23

Reliable implementation of the

running example topology: Spout

@Override

public void nextTuple() {
Utils.sleep(100);

Integer val = rand.nextInt(100);
msgld++;

collector.emit(new Values(val), ms
|/ Store the sent tuple until the ack is received
sentTuples.put(msgld, val);

}

@Override

public void ack(Object id) {
sentTuples.remove(msgld);

}

@Override

public void fail(Object id) {
// Send again the number associated with this msgld
Integer val = sentTuples.get(id);
collector.emit(new Values(val), msgld);

Store the sent tuples

47

Reliable implementation of the

running example topology: Spout

@Override
public void nextTuple() {
Utils.sleep(z00);
Integer val = rand.nextInt(100);
msgld++;
collector.emit(new Values(val), msgld);
1/ Store the sent tuple until the ack is received
sentTuples.put(msgld, val);
}

@Override Remove the tuple when

public void ack(Object id) { | the ackis received

sentTuples.remove(msgld);
}

@Override

public void fail(Object id) {
1/ Send again the number associated with this msgld
Integer val = sentTuples.get(id);
collector.emit(new Values(val), msgld);

48

24/05/2017

24

Reliable implementation of the

running example topology: Spout

@Override
public void nextTuple() {
Utils.sleep(100);
Integer val = rand.nextInt(100);
msgld++;
collector.emit(new Values(val), msgld);
|/ Store the sent tuple until the ack is received
sentTuples.put(msgld, val);
}

@Override Send again the tuple if
public void ack(Object id) { s .
sentTuples.remove(msgld); a fail is received

}

@Override

public void fail(Object id) {
// Send again the number associated with this msgld
Integer val = sentTuples.get(id);
collector.emit(new Values(val), msgld);

49

Reliable implementation of the

running example topology: Bolt

package ...
import ...

@SuppressWarnings("serial")
public class MultiplyByz2BoltReliable extends BaseRichBolt {

private OutputCollector collector;
@Override

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}

@Override]) Ack the processing of
public void declareOutputFields(OutputFieldsDeclarer declarer) {
i the tuple

@Override
public void execute(Tuple tuple) {
/{ Print the computed value on thestandard output

m.out.printIn(tuple.gesifitegerByField("intValue") * 2);
collector.ack(tuple);

50

24/05/2017

25

Reliable implementation of the

running example topology: Topology

package ...
import ...

public class MultiplyBy2TopologyReliable {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamintegers", new EmitRandomiIntSpoutReliable(), 1);
builder.setBolt("multiply", new MultiplyBy2BoltReliable(), 2).shuffleGrouping("streamIntegers");

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf, builder.createTopology());
}else{
System.out.printIn("storm jar example-1.0.0.jar storm_example.multiplyby2Reliable
<topology name>");
}

EIN]IEE

. 00 s

24/05/2017

26

Bolts emitting tuples: Example

Run a topology with one spout and two bolts
The spout emits random integer numbers
The first bolt reads the stream emitted by the
spout and multiplies each number by 2

It emits the output as a new stream
The second bolt reads the stream emitted by
the first bolt and sums 1 to each number

It prints the output on the standard output

53

Bolts emitting tuples: Example

This spout emits random integer —l - x 2 Bolt multiplies by 2
numbers between o and gg. -+1Boltsumsa

(.., 1, 10, 5, ..)=» (.., 2, 20, 10, ..)=» (.., 3, 21, 11, ..)

24/05/2017

27

Bolts emitting tuples: Example -
Topology

public class BoltEmitStreamTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new EmitRandomintSpout(), 1);

builder.setBolt("multiplyBy2", new MultiplyBy2Bolt(), 2).shuffleGrouping("spout");
builder.setBolt("suma", new SumiBolt(), 2).shuferGroUping("multiplyByz")w

Config conf = new Config();
conf.setDebug(false); suma processes the data

conf.setNumWorkers(3); emitted by multiplyBy2

55

Bolts emitting tuples: Example -

Topology

if (args '=null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,
builder.createTopology());
telse {
System.out.printIn("storm jar target/example-1.0.0.jar
storm_example.bolt_emitting_stream.BoltEmitStreamTopology <topology name>");

¥

56

24/05/2017

28

Bolts emitting tuples: Example -
Spout

@SuppressWarnings("serial")
public class EmitRandomIntSpout extends BaseRichSpout §

private SpoutOutputCollector collector;
private Random rand;
private Integer msgld;
HashMap<Integer, Integer> sentTuples;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
this.msgld = o;
this.rand = new Random();
this.sentTuples = new HashMap<Integer, Integer>();

57

Bolts emitting tuples: Example -

Spout

@0Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("intValue"));

¥

@Override
public void nextTuple() {
Utils.sleep(1200);
Integer val = rand.nextInt(100);
msgld++;
collector.emit(new Values(val), msgld);
|/ Store the sent tuple until the ack is received
sentTuples.put(msgld, val);

58

24/05/2017

29

Bolts emitting tuples: Example -

Spout

@Override
public void ack(Object id) {
sentTuples.remove(msgld);
}
@0Override
public void fail(Object id) {
// Send again the number associated with this msgld

Integer val = sentTuples.get(id);

collector.emit(new Values(val), msgld);

59

Bolts emitting tuples: Example —
x2Bolt

@SuppressWarnings("serial")
public class MultiplyBy2Bolt extends BaseRichBolt {

private OutputCollector collector;
@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

this.collector = collector;

¥

60

24/05/2017

30

Bolts emitting tuples: Example -

x2Bolt

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) §{

|‘ declarer.declare(new Fields("time2Value"));
3 Declare the schema of the

emitted tuples

@0Override

public void execute(Tuple tuple) {
// Print the computed value on the standard output
// Multiply by 2 the value of the tuple and emit it on the output stream
collector.emit(tuple, new Values(tuple.getintegerByField("intValue")* 2));
collector.ack(tuple);

61

Bolts emitting tuples: Example —

x2Bolt

@0Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("time2Value"));

¥

@Override

public void execute(Tuple tuple) {
/[Print the computed value on the standard output
[/ Multiply by 2 the value of the tuple and emit it on the output stream
collector.emit(tuple, new Values(tuple.getintegerByField("intValue")* 2))4‘
collector.ack(tuple);

Emit a new tuple on the ouput stream.
} - The first parameter is the original tuple
-The second one is the new tuple

The first tuple is used to create a link
between the original tuple and the
generated ones for managing reliability

62

24/05/2017

31

Bolts emitting tuples: Example —
+1Bolt

@SuppressWarnings("serial")
public class SumiBolt extends BaseRichBolt {

private OutputCollector collector;

@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

this.collector = collector;

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) §{

}

63

Bolts emitting tuples: Example —

+1Bolt

@0Override

public void execute(Tuple tuple) {
/[Print the computed value on the standard output
// Sum 1 to the value of the tuple
System.out.printIn((tuple.getinteger(o) + 1));
collector.ack(tuple);

64

24/05/2017

32

Spouts and Bolt: other
methods

EE— 0000 oo

Spouts: other methods

BaseRichSpout has also the following
methods

void close()

= Called when a spout is going to be shutdown
= There is no guarantee that cleanup will be called

void activate()

= Called when a spout has been activated out of a
deactivated mode

void deactivate()
= Called when a spout has been deactivated

66

24/05/2017

33

24/05/2017

Bolts: other methods

BaseRichBolt has also the following methods

void cleanup()

= Itis called when a Bolt is going to be shutdown
* There is no guarantee that cleanup will be called

67

Multiple input and output
streams

. 00 s

34

Multiple input streams

Each bolt can subscribe multiple input
streams/the output of multiple components to
Implement join operations
Receive data and signals

For each stream, the most appropriate stream
grouping technique is specified

In the nextTuple(..) method a different operation
is executed depending on the origin of the tuple
(i.e., the input stream)

69

Multiple input streams

A bolt can subscribe the streams of multiple
components by means of a chain of calls to
the stream grouping methods

One call for each subscribed component
Example

builder.setBolt("merge”,
new ProcessMultipleStreamsBolt(), 2)
.shuffleGrouping(“firstSpout™)
.shuffleGrouping(“"secondSpout");

24/05/2017

35

Multiple input streams: Example

Run a topology with two spouts and one bolt
The two spouts emit random integer
numbers

The bolt multiply by 2 the numbers emitted
by the first spout and by 10 the numbers
emitted by the second spout

Print the results computed by the bolt on the
standard output

Multiple input streams: Example

secondSpout
This bol Itipli h
These spouts emit streams of is bolt multiplies eac

) —l element emitted by firstSpout
random integer numbers between
by 2 and each element

emitted by secondSpout by 10

(.., 74, 10, 5, ..)
(.., 148, 20, 140, 10, 120, 20, ..)
(.., 14, 12, 2, ..)

oand 99.

24/05/2017

36

Multiple input streams: Example -
Topology

public class MultiplelnputStreamsTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("firstSpout", new EmitRandomIntSpout(), 1);
builder.setSpout("secondSpout", new EmitRandomIntSpout(), 1);
builder.setBolt("merge”, new ProcessMultipleStreamsBolt(), 2)
.shuffleGrouping("firstSpout")
.shuffleGrouping("secondSpout");

Config conf = new Config();
conf.setDebug(false); merge subscribes the
conf.setNumWorkers(3); streams emitted by
firstSpout and secondSpout

73

Multiple input streams: Example -

Topology

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf, builder.createTopology());
}else {
System.out.println("storm jar target/example-1.0.0.jar
storm_example.multiple_input_streams.MultipleInputStreamsTopology <topology name>");

}

74

24/05/2017

37

Multiple input streams: Example -

Spout

package ...

Import ...

@SuppressWarnings("serial")

public class EmitRandomintSpout extends BaseRichSpout {

private SpoutOutputCollector collector;
private Random rand;
private Integer msgld;
HashMap<Integer, Integer> sentTuples;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
this.msgld = o;
this.rand = new Random();
this.sentTuples = new HashMap<Integer, Integer>();

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("intValue"));

}
75

Multiple input streams: Example -

Spout

@Override
public void nextTuple() {
Utils.sleep(100);
Integer val = rand.nextInt(100);
msgld++;
collector.emit(new Values(val), msgld);
/| Store the sent tuple until the ack is received
sentTuples.put(msgld, val);
}

@Override
public void ack(Object id) {
sentTuples.remove(msgld);

}

@Override

public void fail(Object id) {
/I Send again the number associated with this msgld
Integer val = sentTuples.get(id);
collector.emit(new Values(val), msgld);

76

24/05/2017

38

24/05/2017

Multiple input streams: Example -

Bolt

package ...

@SuppressWarnings("serial")
public class ProcessMultipleStreamsBolt extends BaseRichBolt {

private OutputCollector collector;

@Override

public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

77

Multiple input streams: Example -

Bolt

Check which spout
(component) emitted the
public void execute(Tuple tuple) {

/{ Print the computed value on the standar tUpIe
{// Multiply by 2 the numbers of the m collected from the firstSpout
and by 10 the numbers of theStream of the secondSpout
ﬁﬁupIe.getSourceComponent().eqUals("firstSpout")) ‘i
System.out.println("*firstSpout:" + tuple.getintegerByField("intValue") + "->"
+tuple.getintegerByField("intValue") * 2);

@Override

}else {

System.out.println("secondSpout:" +tuple.getintegerByField("intValue") +"->"

+tuple.getintegerByField("intValue") * 10);
}

collector.ack(tuple);

78

39

Multiple output streams

Each spout can emit multiple output streams

The emitted streams are usually used by different
paths of the topology to perform different
analysis in parallel
Each output stream must be associated with
a unique name
The emit(..) method must be called
specifying the name of the emitting stream
for every emitted tuple

79

Multiple output streams

Names and schemas of the emitted streams
are defined in the declareOutputFields(...)
method of the spout by using the
declareStream(name, schema) method

Example
public void declareOutputFields(OutputFieldsDeclarer declarer){
declarer.declareStream(“firstStream",
new Fields(“firstAttr", “secondAttr”));
declarer.declareStream(“secondStream",
new Fields(“attra"));

24/05/2017

40

Multiple output streams

In the nextTuple(..) method the emit(..) method
must be called by specifying the stream name
Example

public void nextTuple() {

if (test) {
collector.emit(“firstStream", new Values(valz, val2), msgld);
}else {
collector.emit("secondStream", new Values(val1), msgld);
}
/[Store the sent tuple until the ack is received
sentTuples.put(msgld, val);

81

Multiple output streams

Bolts must specify which emitted stream
want to subscribe by specifying the name of
the spout and the name of the stream

Each bolt can subscribe multiple streams of the

same spout by means of multiple calls to the
grouping methods

One different call for each subscribed stream
Example

builder.setBolt(*myBolt", new MyBolt(),2)
.shuffleGrouping(“spout”,“firstStream”);

82

24/05/2017

41

Multiple output streams: Example

Run a topology with one spout and two bolts
The spout emits two streams of random integer
numbers
The first stream (called evenStream) contains even
numbers
The second stream (called oddStream) contains odd
numbers
One bolt subscribes the evenStream and multiplies
each value by 2
The other bolt subscribes the oddStream and sums 1
to each value
Print the results computed by the two bolts on the
standard output

83

Multiple output streams: Example

oddBolt

evenStream

Spout

oddStream

This spout emits two streams of
random integer numbers between o

and 99. — - evenBolt multiply by 2

) - oddBoltsum 1
evenStream emits even numbers

and oddStream emits odd numbers

(.., 1, 10, 5, ..)<:(--, 20, ..)
(c0r 2, 6,..)

24/05/2017

42

Multiple output streams: Example -
Topology

public class MultipleOuputStreamsTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout", new EmitMultipleRandomIntSpout(), 1);
builder.setBolt("processEven", new MultiplyBy2Bolt(), 2)
.shuffleGrouping("spout™,"evenStream™);
g
builder.setBolt("processOdd", new Sumi1Bolt(), 2)
.shuffleGrouping("spout","oddStream");
g

Config conf = new Config(); Specify component and
conf.setDebug(false); stream
conf.setNumWorkers(3);

85

Multiple output streams: Example -

Topology

if (args '=null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,
builder.createTopology());
telse {
System.out.printIn("storm jar target/example-1.0.0.jar
storm_example.multiple_output_streams.MultipleOuputStreamsTopology <topology
name>");

¥

86

24/05/2017

43

Multiple output streams: Example -
Spout

@SuppressWarnings("serial")
public class EmitMultipleRandomIntSpout extends BaseRichSpout §

private SpoutOutputCollector collector;
private Random rand;
private Integer msgld;
HashMap<Integer, Integer> sentTuples;

@Override
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
this.msgld = o;
this.rand = new Random();
this.sentTuples = new HashMap<Integer, Integer>();

87

Multiple output streams: Example -

@0Override

|declarer.declareStream("evenStream”, new Fields("intValue"));

}
Declare the output streams:
@Override -Name
public void nextTuple() { ~Schema
Utils.sleep(1200);
Integer val = rand.nextInt(100);
msgld++;
if (val% 2 ==10) {
collector.emit("evenStream", new Values(val), msgld);
telse {
collector.emit("oddStream", new Values(val), msgld);
}
/| Store the sent tuple until the ack is received
sentTuples.put(msgld, val);
}

88

24/05/2017

44

Multiple output streams: Example -

Spout

@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declareStream("oddStream", new Fields("intValue"));
declarer.declareStream("evenStream", new Fields("intValue"));

}

@Override
public void nextTuple() {
Utils.sleep(100);
Integer val = rand.nextInt(100);
msgld++;
if (val% 2 ==0) {
| collector.emit("evenStream", new Values(val), msgldj

telse {
[collector.emit("oddStream", new Values(val), msqld)
} .
|/ Store the sent tuple until the ack is received Specify the name of the
sentTuples.put(msgld, val); output stream

89

Multiple output streams: Example -

Spout

@0Override

public void ack(Objectid) { / Remove ﬁhe tUple. frgm thek
sentTuples.remove(msgld); queue when received an ac

3

@Override

public void fail(Object id) {
// Send again the number associated with this msgld
Integer val = sentTuples.get(id);

if (val% 2 ==10) {

collector.emit("evenStream", new Values(val), msgld);
telse {

collector.emit("oddStream", new Values(val), msgld);

}

24/05/2017

45

Multiple output streams: Example -

Spout

@Override
public void ack(Object id) {
sentTuples.remove(msgld);

¥

@0Override

public void fail(Object id) {
// Send again the number associated with this msgld
Integer val = sentTuples.get(id);

if (val% 2 ==0) {

collector.emit("evenStream", new Values(val), msgld);
telse {

collector.emit("oddStream", new Values(val), msgld);

}

Send again the tuple in case
of failure

Multiple output streams: Example -

MultiplyBy2Bolt

package ...

import ...

@SuppressWarnings("serial")

public class MultiplyBy2Bolt extends BaseRichBolt {

private OutputCollector collector;

@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;

¥

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) §
3

24/05/2017

46

Multiple output streams: Example -

MultiplyBy2Bolt

@Override
public void execute(Tuple tuple) {
/[Print the computed value on the standard output
/[Multiply by 2 the value of the tuple
System.out.printIn(tuple.getSourceStreamld());
System.out.printIn("Even"+tuple.getintegerByField("intValue") + "->" +
(tuple.getintegerByField("intValue") * 2));
collector.ack(tuple);

}

93

Multiple output streams: Example -

SumaiBolt

package ...

import ...

@SuppressWarnings("serial")

public class SumiBolt extends BaseRichBolt {

private OutputCollector collector;

@Override
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.collector = collector;

¥

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) §

}

94

24/05/2017

47

Multiple output streams: Example -

SumaBolt

@Override
public void execute(Tuple tuple) {
/[Print the computed value on the standard output
// Sum 1 to the value of the tuple
System.out.printIn(tuple.getSourceStreamld());
System.out.printin("Odd"+tuple.getintegerByField("intValue") + "->" +
(tuple.getintegerByField("intValue") + 1));
collector.ack(tuple);

}

95

Multiple output streams

Also bolts can emit multiple streams
The approach is the same used for spouts

96

24/05/2017

48

24/05/2017

Reliability with complex
tolopologies

EE— 0000 oo

Reliable Topologies

Storm offers several different levels of
guaranteed message (tuple) processing

Best effort
= Noreliable spouts

* Acks and fails are not managed
At least once

= Reliable spouts

= Acks an fails are managed and non-processed tuples are sent again in
order to be processed

Exactly once through Trident
= We will see it later

98

49

Reliable Topologies

At least once

We already discuss how to implement simple
reliable topologies

A topology with one spout and one bolt

A topology with a single path
The next slides discuss how to manage reliability
with more complex topologies

99

Tuple trees

A tuple coming off a spout can trigger thousands of
tuples to be created based on it
For each tuple emitted by a spout, storm can build a
tuple tree
It represents the dependencies among the original tuples
and its “descendants”
Storm considers a tuple coming off a spout “fully
processed” when the tuple tree has been exhausted
and every message in the tree has been processed
Atuple is considered “failed” when its tree of
messages fails to be fully processed within a specified
timeout or when at least one failure appends

24/05/2017

50

Storm's reliability

To benefit from Storm's reliability capabilities
you must
Tell Storm whenever you're creating a new link in the
tree of tuples
Anchoring the new tuples to the original ones

Tell Storm when you have finished processing an
individual tuple
By call the ack method on the processed tuples
By doing both these things, Storm can detect
when the tree of tuples is fully processed and
can ack or fail the spout tuple appropriately

Anchoring

Specifying a link in the tuple tree is called

anchoring

Anchoring is done at the same time you emit

a new tuple by specifying also the original

tuple in the emit(..) method
collector.emit(tuple, emitted tuple)

102

24/05/2017

51

24/05/2017

Multiple-Anchoring

An output tuple can be anchored to more
than one input tuple
This is useful when doing streaming joins or
aggregations
A multi-anchored tuple failing to be
processed will cause multiple tuples to be
replayed from the spouts

103

Multiple-Anchoring

Multi-anchoring is done by specifying a list of
tuples rather than just a single tuple when
calling the emit() method

Example

List<Tuple> anchors = new ArrayList<Tuple>();
anchors.add(tuplea);

anchors.add(tuple2);

collector.emit(anchors, new Values(z, 2, 3));

52

Aggregations and joins

Bolts that do aggregations or joins may delay
acking a tuple until after it has computed a
result based on a bunch of tuples
Aggregations and joins will commonly multi-
anchor their output tuples as well

We will see an example later

Common Topology Patterns

24/05/2017

53

Streaming joins

S 00 s

Streaming joins

A streaming join combines two or more data
streams together based on some common fields
There are several definitions/types of “streaming
join”
Some applications join all tuples for two streams over
a finite window of time

Other applications expect exactly one tuple for each
stream involved in the join

TH.ejoin type is usually application-dependent

108

24/05/2017

54

24/05/2017

Streaming joins

The common pattern among all these join types
consists of the following steps

Send the tuples of the multiple input streams with the

same values of the join fields to the same task of the

joining bolt

= This is accomplished by using a fields grouping on the join
fields for the input streams to the join bolt

Temporarily store the tuples in an instance variable of
the task

Perform the join operation inside the task

Remove the tuples from the instance variable as soon
as they are not more needed

109

In-memory caching + fields
grouping combo

S 0

55

In-memory caching + fields

grouping combo

It is common to keep caches in-memory in
Storm bolts
For example to avoid invoking multiple times an
external service through http requests
Caching becomes particularly powerful when
you combine it with a fields grouping
Each task keeps only the subset of cache used to
process the values sent to it

No useless overlapping among the caches of the bolt’s
tasks

In-memory caching + fields

grouping combo

Suppose you have a bolt that expands short
URLs into long URLs
Given a short URL, an HTTP request to an external
service is invoked to obtain the long URL
Keep an LRU cache of short URL to long URL to
avoid doing the same HTTP requests multiple
times
To improve the efficiency and reduce multiple
requests for the same short URL, fields grouping
on the short URL field must be specified

Each task of the bolt manages a subset mapping short
URL -> long URL

24/05/2017

56

BasicBolt

T

BasicBolt

Many bolts follow a similar pattern of
Reading an input tuple
Emitting zero or more tuples based on that input
tuple
And then acking that input tuple immediately at
the end of the execute method
Bolts that match this pattern are things like
functions and filters

24/05/2017

57

24/05/2017

BasicBolt

This is such a common pattern that Storm
exposes an abtract class called BaseBasicBolt
that automates this pattern for you

All acking is managed for you

Throw a FailedException if you want to fail the
tuple

Periodic statistics/output

. 00 s

58

Periodic statistics/output

Many applications emit a statistic of interest,
based on the analysis of the input stream,
every t seconds

For example, suppose you have a bolt that
every t seconds emits the number of
analyzed input tuples

Periodic statistics/output: Sol #1

This problem can be solved by using a spout
generating a “signal” every t seconds

The bolt emits the current value of the statistic
every time it receives the “signal” tuple

The bolt subscribes both the signal stream and
the stream of data to analyze

24/05/2017

59

Periodic statistics/output: Sol #2

Storm provides a special type of tuples called
Tick tuples

They are configured per-component, i.e. per
bolt

OneTick tuple is sent to each component every
Config. TOPOLOGY_TICK_TUPLE_FREQ_SECS seconds

We can use this special type of tuples to decide
when to emit the statistic of interest

119

Tick tuples

The frequency of the tick tuples for each bolt
is set in the getComponentConfiguration
method of the bolt

@0Override

public Map<String, Object> getComponentConfiguration() §

Map<String, Object> conf = new HashMap<String,
Object>();

conf.put(Config. TOPOLOGY_TICK_TUPLE_FREQ_SECS,
emitFrequencylnSeconds);

return conf;

24/05/2017

60

Tick tuples

The method TupleUrtils.isTick(tuple) can be
used in the execute(..) method of a bolt to
check if the current tuple is a Tick tuple

Tick tuples

Tick tuples are not 200% guaranteed to arrive in time
They are sent to a bolt just like any other tuples, and will
enter the same queues and buffers

Congestion, for example, may cause tick tuples to arrive too late.
Across different bolts, tick tuples are not guaranteed to
arrive at the same time

Even if the bolts are configured to use the same tick tuple
frequency

Currently, tick tuples for the same bolt will arrive at the
same time at the bolt's various task instances
However, this property is not guaranteed for the future

Tick tuples must be acked like any other tuple

24/05/2017

61

24/05/2017

Periodic statistics/output: Exmple

Run a topology that every t seconds emits
the number of tuples emitted by a spout that
emits a stream of random integers

Streaming top N

. 00 s

62

Streaming top N

A common continuous computation done on
Storm is "streaming/selecting top N"
elements

For example, suppose you have a spout that
emits tuples of the form ["value", "count"]

and you want a bolt that emits, every t
seconds, the top N tuples based on count

125

Streaming top N: Solution #1

The simplest way to implement streaming top N
is based on one single bolt
The bolt

Does a global grouping on the stream
i.e., all tuples are sent to one single task of the bolt
Maintains a listin memory of the top N items
In the only task executing the bolt
Emits the top-N list every t seconds
This approach does not scale to large streams
since the entire stream has to go through one
single task

126

24/05/2017

63

Streaming top N: Solution #2

A more scalable solution is based on two bolts
The first bolt computes local top-N lists in
parallel on the input stream

One top-N list in each task of the first bolt

Each task emits its local top-N list every t seconds
The second bolt computes the global top-N list
merging the local ones

This bolt does a global grouping on the output of the

first bolt and emits the global top-N list every t
seconds

127

Streaming top N

The differences between Solution #1 and
Solution #2 is highly related to t (the
frequency of emission of the global top-N list)

The higher t, the higher the difference between
Sol. #1 and Sol. #2

128

24/05/2017

64

24/05/2017

Batching

EE— 0000 oo

Batching

Some applications need to process a group of
tuples in batch rather than individually

You may want to batch updates to a database for
efficiency reasons

You may need to do a streaming aggregation

130

65

Batching

If you want reliability in your batching data
processing
You must hold on the tuples in an instance
variable while the bolt waits to do the batching

Once you complete the batch operation, ack all
the tuples you were holding

If the bolt emits tuples, then you may want to use
multi-anchoring to ensure reliability

131

Batching

This pattern can be implemented by using
The standard classes
Or transactional topologies

There are specifically designed for processing batch of
tuples

132

24/05/2017

66

