
10/18/2016

1

Collections: Iterate,

Reduce, Map

Collections: List, Sets, Maps

• Scala has a high-performance, object-oriented, and
type-parameterized collections

• We already discuss the basic features of some of them

• Scala’s collections have higher-order operations like
map, filter, and reduce that make it possible to manage
and manipulate data with short and expressive
expressions

• The root of all iterable collections, Iterable, provides a
common set of methods for iterating through and
manipulating collection data

2

10/18/2016

2

Collections: Iterate, Map, Reduce

• Scala’s collections use higher-order functions

extensively to

• Iterate

• Usually you will not use a for loop to iterate over a collection

• Map

• convert a list item-by-item to a different list

• Reduce

• fold a list into a single element

• and perform a wide range of other operations 3

foreach

• foreach() is a higher-order functions of collections

• It takes a function (a procedure, to be precise) and

invokes it on every item in the list

• It considers one item at a time and executes the specified

procedure on it

• It returns nothing because a procedure is invoked

4

10/18/2016

3

foreach: Example

val colors = List("red", "green", "blue")

/* Print on the console the content the list */

colors.foreach((c: String) => println(c))

--

val colors = List("red", "green", "blue")

colors.foreach(println(_))

5

map

• map() is a higher-order functions of collections

• It takes a function and applies the function on each

element of the collection

• The returned values are “stored” in a new collection

• The type of the new collection can be different from the

one of the former one

6

10/18/2016

4

map

• map() is used to build one collection from another

one

• The new collection has the same number of elements

of the one on which map is invoked

• Each element of the new collection has been obtained

by applying the specified function on one element of

the initial collection

7

map

(e1, e2, .., en)

(f(e1), f(e2), .., f(en))

8

10/18/2016

5

map: Example

val numbers = List(32, 95, 24, 21, 17)

val numberTimes2 = numbers.map((n: Int) => n*2)

--

val numbers = List(32, 95, 24, 21, 17)

val numberTimes2 = numbers.map(_*2)

9

map: Example #2

val colors: List[String] = List("red", "green", "blue")

/* The returned list contains the lengths of the strings

of the “input” list.

The data type of the two lists is not the same */

val sizes: List[Int] = colors.map((c: String) => c.size)

10

10/18/2016

6

reduce

• reduce() is a higher-order functions of collections

• It takes a function that combines two list elements

into a single element

• It “reduces” the list given a reduction function,

starting with the first element in the collection

• i.e., it returns a single value that is obtained by applying the

specified function over one pair of elements (of the

collection) at a time

11

reduce

• Given a list l and a reduction function f, reduce()

operates as follows

1. Apply f on the first two elements of the list l

2. Substitute the first two elements of the list l with the

value obtained at Step 1

3. If the updated version of l contains one single

element then return that element as the final output

of the reduce operation. Otherwise go to Step 1

12

10/18/2016

7

reduce

(e1, e2, e3, .., en)

(f(e1, e2), e3, .., en)

(f(f(e1, e2), e3), .., en)

(f(f(f(e1, e2), e3), .., en))

13

reduce

• If the applied function is commutative and

associative, the order of the elements in the collection

is not relevant

• The reduce function is applied on two elements of the

same type and return a new value of the same type

14

10/18/2016

8

reduce: Example

val numbers = List(32, 95, 24, 21, 17)

val sum = numbers.reduce((n1: Int, n2: Int) => n1+n2)

--

val numbers = List(32, 95, 24, 21, 17)

val sum = numbers.reduce(_ + _)

15

reduce: Example #2

val colors: List[String] = List("red", "green", "blue")

/* Concatenate the strings of the “input” list. */

val concatenated = colors.reduce(_ + _)

16

10/18/2016

9

Other mapping operations

Name Example Description

collect List(0, 1, 0).collect(

{case 1 =>

"ok"})

Transforms only the matched

elements

flatMap List("milk,tea","apple")

.flatMap.(_.split(','))

Transforms each element using

the given function and

“flattens” the list of results into

this list

map List("milk","tea").map(

_.toUpperCase)

Transforms each element using

the given function

17

Other reducing operations

Name Example Description

reduce List(4, 5, 6).reduce(_

+ _)

Reduces the list given a

reduction function, starting with

the first element in the list

reduceLeft List(4, 5,

6).reduceLeft(_ + _)

Reduces the list from left to

right given a reduction function,

starting with the first element in

the list

reduceRight List(4, 5,

6).reduceRight(_ + _)

Reduces the list from right to

left given a reduction function,

starting with the first element in

the list
18

10/18/2016

10

Other reducing (folding)

operations

Name Example Description

fold List(4, 5, 6).fold(0)(_ +

_)

Reduces the list given a starting

value and a reduction function

foldLeft List(4, 5,

6).foldLeft(0)(_ + _)

Reduces the list from left to

right given a starting value

and a reduction function

foldRight List(4, 5,

6).foldRight(0)(_ + _)

Reduces the list from right to

left given a starting value and a

reduction function

19

Other reducing (scanning)

operations

Name Example Description

scan List(4, 5,

6).scan(0)(_ + _)

Takes a starting value and a reduction

function and returns a list of each

accumulated value

scanLeft List(4, 5,

6).scanLeft(0)(_ +

_)

Takes a starting value and a reduction

function and returns a list of each

accumulated value from left to right

scanRight List(4, 5,

6).scanRight(0)(_

+ _)

Takes a starting value and a reduction

function and returns a list of each

accumulated value from right to left

20

10/18/2016

11

Math and Boolean reduction

operations

• There are some particular reducing operations

• Math reduction operations

• Booleans reduction operations

• They can be implemented by using the standard

reduce operations, or by combing reduce and map

operations

• However, since they are common, they are already

provide by Scala
21

Math reduction operations

Name Example Description

max List(41, 59, 26).max Finds the maximum value

in the list

min List(10.9, 32.5, 4.23, 5.67).min Finds the minimum value

in the list

product List(5, 6, 7).product Multiplies the numbers in

the list

sum sum List(11.3, 23.5, 7.2).sum Sums up the numbers in

the list

22

10/18/2016

12

Boolean reduction operations

Name Example Description

Contains List(34, 29,

18).contains(29)

Checks if the list contains this

element

endsWith List(0, 4,

3).endsWith(List(4, 3))

Checks if the list ends with a

given list

exists List(24, 17, 32).exists(_ <

18)

Checks if a predicate holds true

for at least one element in the list

forall List(24, 17, 32).forall(_ <

18)

Checks if a predicate holds true

for every element in the list

startsWith List(23, 4,

3).startsWith(List(23))

Tests whether the list starts with

a given list
23

Other operations on lists

Name Example Description

distinct List(3, 5, 4, 3, 4).distinct Returns a version of the list

without duplicate elements

filter List(23, 8, 14, 21).filter(_

> 18)

Returns elements from the list

that pass a true/false function

partition List(1, 2, 3, 4,

5).partition(_ < 3)

Groups elements into a tuple of

two lists based on the result of a

true/false function

reverse List(1, 2, 3).reverse Reverses the list

drop List('a', 'b', 'c', 'd').drop(2) Subtracts the first n elements

from the list
24

