24/05/2017

Apache Storm: Advanced
Developing Applications

Windowing

Windowing

Storm has support for processing tuples that
fall within a window
The system processes one window of tuples at a
time
Windows are specified with the following two
parameters
Window length
The number of tuples or time duration of the windows
Sliding interval
The interval at which the windowing slides

Sliding Window

Tuples are grouped in windows and window
slides every sliding interval

A tuple can belong to more than one window
Example

A time duration based sliding window with length 10
secs and sliding interval of 5 seconds

|e1e2e3|ese5ebe7|e8egeio|...

0 5 10 15 <-time
|<---------- W1 --------- >|
|------------ W2 -----mmo >|

24/05/2017

Tumbling Window

Tuples are grouped in a single window based on
time or count

Any tuple belongs to only one of the windows
Example

A time duration based tumbling window with length 5
secs

|e1e2e3|ese5ebe7|e8egelo|...
0 5 10 15 <-time

|<-- wi-->|<----W2---->|<-- w3--->|...

BaseWindowedBolt

The BaseWindowedBolt abstract class must
be implemented to manage “windows” of
tuples

The main methods of this class are similar to
the ones of the standard bolts

But the execute() method receives a set of tuples
as parameter
One set of tuples for each windows

24/05/2017

withWindow()

The withWindow(..) methods are used to
specify for each "window bolt” the
characteristics of the windows

withWindow()

withWindow(Count windowLength, Count slidingInterval)

Tuple count based sliding window that slides after

‘slidingInterval’ number of tuples
withWindow(Count windowLength)

Tuple count based window that slides with every incoming tuple
withWindow(Count windowLength, Duration
slidingInterval)

Tuple count based sliding window that slides after

‘slidingInterval time duration
withWindow(Duration windowLength, Duration
slidingInterval)

Time duration based sliding window that slides after
‘slidingInterval time duration

24/05/2017

withWindow()

withWindow(Duration windowLength)
Timle duration based window that slides with every incoming
tuple
withRNindow(Duration windowLength, Count
slidingInterval)
Time duration based sliding window configuration that slides
after ‘slidingInterval’ number of tuples
withTumblingWindow(BaseWindowedBolt.Count count)
Count based tumbling window that tumbles after the specified
count of tuples
withTumblingWindow(BaseWindowedBolt.Duration
duration)

Time duration based tumbling window that tumbles after the
specified time duration

Sliding Window: Example

Define a topology with
A spout that emits a stream of random integers

A sliding window bolt that sum the values of each
window
Set

Window type: Sliding window

Tuples per window: 2 tuples

Sliding interval: 1 tuple

10

24/05/2017

Sliding Window: Example

package........
Import ...

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);

builder.setBolt("sumSlidingWindowBolt",
new SumWindowBolt().withWindow(new Count(2), new Count(1)), 1)
.shuffleGrouping("streamintegers");

11

Sliding Window: Example

package........
Import

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlintegers", new EmitRandomIntSpout(), 1);

1

builder.setBolt("sumSlidingWindowBolt"
new SumWindowBolt().withWindow(new Count(2), new Count(1)), 1)

.shuferGroupmg("styﬁlntegers");

Definition the characteristics of the sliding window

12

24/05/2017

Sliding Window: Example

package........
Import ...

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("streamlIntegers", new EmitRandomIntSpout(), 1);

builder.setBolt("sumSlidingWindowB
new SumWindowBolt().withWindow(new Count(zi new Count(z)), 1)
.shuffleGrouping("stregmintegers");

Number of tuples per window

13

Sliding Window: Example

package........
Import

public class SlidingWindowTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("streamlintegers", new EmitRandomIntSpout(), 1);
builder.setBolt("sumSlidingWindowBolt",
new SumWindowBolt().withWindow(new Count(2),[new Count(1)
.shuffleGrouping("streaminteger

Sliding interval

14

24/05/2017

Sliding Window: Example

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];

StormSubmitter.submitTopology(topologyName, conf,
builder.createTopology());
}else {
System.out.printin(
"storm jar target/example-1.0.0.jar
storm_example.slidingwindow.SlidingWindowTopology <topology name>");

}

15

Sliding Window: Example

public class SumWindowBolt extends BaseWindowedBolt §
private OutputCollector collector;

@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector
collector) {

this.collector = collector;

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

16

24/05/2017

Sliding Window: Example

public class SumWindowBolt extend# BaseWindowedBolt { ‘|

private OutputCollector collector;

This bolt extends the BaseWindowBolt

@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector
collector) {

this.collector = collector;

}
@Override

public void declareOutputFields(OutputFieldsDeclarer declarer) {
}

17

Sliding Window: Example

@Override
public void execute(TupleWindow inputWindow) {
int sum = o;
List<Tuple> tuplesinWindow = inputWindow.get();

for (Tuple tuple : tuplesinWindow) {

sum += (int) tuple.getinteger(o);

}

System.out.printIn(sum);

18

24/05/2017

Sliding Window: Example

@Override

|‘ public void execute(TupleWindow inputWindow) § ‘|
Nt sum = o;
List<Tuple> tuplesinWindo

= inputWindow.get();

for (Tuple tuple : tuplesinWindow) {
sum += (int) tuple.getinteger(o);

}

The execute method receives a set of tuples

System.out.printin(sum); (all the tuples of a window)

19

Sliding Window: Example

@Override
public void execute(TupleWindow inputWindow) {
int sum = o;
List<Tuple> tuplesinWindow = inputWindow.get();

for (Tuple tuple : tuplesinWindow) {
sum += (int) tuple.getinteger(o);

}

System.oUt-prinunN

5 Analyze the set of tuples and compute the
result for this window

20

24/05/2017

10

24/05/2017

Transactional topologies

EE— 0000 oo

Transactional topologies

Storm allows implementing reliable
topologies
Tuples are replayed if an error occurs

It provides an “at least once processing
guarantee”

How can we avoid processing the same tuple
multiple times?

Storm provides two solutions

Transactional topologies (deprecated)
Trident

11

Transactional topologies

Transactional topologies enable getting
exactly once messaging semantic
You can do things like counting in a fully-accurate,
scalable, and fault-tolerant way
The core idea behind transactional topologies
is to provide a strong ordering on the
processing of data

Transactional topologies: Sol. #1

The simplest (inefficient) solution consists in
processing one tuple at a time
Move on the next tuple only when the current

tuple has been successfully processed by the
topology

Each tuple is associated with a transaction id

If the tuple fails and needs to be replayed, then it
is emitted with the exact same transaction id

Atransaction id is an integer that increments for
every tuple

24/05/2017

12

Transactional topologies: Sol. #1

The strong ordering of tuples gives you the
capability to achieve exactly-once semantic
even in the case of tuple replay

Transactional topologies: Sol. #1

Suppose you want to do a global count of the
tuples in the analyzed stream and store itin a
database every time the count is updated
Instead of storing just the count in the database, you
store the count and the latest transaction id
When your code updates the count, it should
update the count only if the transaction id in the
database differs from the transaction id of the
current tuple

i.e., if the previous tuple has been successfully
processed

24/05/2017

13

Transactional topologies: Sol. #1

Consider the two cases

The transaction id in the database is different than
the transaction id of the current tuple
Because of the strong ordering of transactions, we know for

sure that the current tuple has not been already processed
and hence it is not represented in the current count

We can safely increment the count and update the transaction id
The transaction id is the same as the transaction id of
the current tuple

It means we already processed this tuple

We must skip the update of count

The tuple must have failed after updating the count and the
transaction id in the database but before reporting success back to
Storm

27

Transactional topologies: Sol. #1

Having to wait for each tuple to be
completely processed before moving on to
the next one this solution is significantly
inefficient
Moreover, this design makes no use of the
parallelization capabilities of Storm

At least in the bolt component
Finally, it entails a huge amount of database
calls

At least one per tuple

28

24/05/2017

14

Transactional topologies: Sol. #2

Instead of processing one tuple at a time, a
better approach is to process a batch of tuples at
a time
For example, if you are doing a global count, you
would increment the count by the number of tuples in
the entire batch
:cfaI bc?tch fails, you replay the exact batch that
aile
Instead of assigning a transaction id to each
tuple, you assign a transaction id to each batch
The processing of the batches is strongly
ordered

29

Transactional topologies: Sol. #2

This solution

Makes advantage of Storm's parallelization
capabilities as the computation for each batch can
be parallelized

Performs less database operations than Solution
#1

One DB operation per batch vs one DB operation per
tuple

30

24/05/2017

15

Transactional topologies: Sol. #2

This solution is significantly better than Solution
#1

However, the workers in the topology still spend
a lot of time being idle waiting for the other
portions (components) of the toplogy to finish

Transactional N | i
Bolt 1 = Bolt2 = Bolt3 = Bolt4

After bolt 1 finishes its portion of the processing on
the current batch, it will be idle until the rest of the
bolts finish and the next batch can be emitted from
the spout

Transactional topologies: Sol. #3

A key realization is that not all the work for

processing batches of tuples needs to be

strongly ordered

For example, when computing a global count,

the computation is based on two parts
Computing the partial count for the batch

Updating the global count in the database with
the partial count

24/05/2017

16

Transactional topologies: Sol. #3

The computation of Step #2 needs to be
strongly ordered across the batches
But you can pipeline the computation of the
batches by computing Step #1 for many
batches in parallel

While batch 1 is working on updating the

database, batches 2 through 10 can compute their
partial counts

33

Transactional topologies: Sol. #3

Storm accomplishes this distinction by breaking
the computation of a batch into two phases
The processing phase

This is the phase that can be done in parallel for many
batches

The commit phase

The commit phases for batches are strongly ordered

Sothe commit for batch 2 is not done until the commit for batch 1
has been successful

The two phases together are called a
"transaction"

34

24/05/2017

17

Transactional topologies: Sol. #3

Many batches can be in the processing phase
at a given moment
Only one batch can be in the commit phase
If there is any failure in the processing or
commit phase for a batch, the entire
transaction is replayed

Both phases are “replayed”

35

Transactional topologies: Sol. #3

The commit phase is usually significantly
faster than the processing phase

For this reason, it does not impact negatively on
the overall performance of the toplogy even if it
does not exploit the parallelism of Storm

36

24/05/2017

18

Storm support for Transactional

Topologies

Storm provides a set of classes to support the
implementation of Solution #3
Specifically, it provides
TransactionalTopologyBuilder,
TransactionalSpout,
BaseTransactionalBolt,
BatchBolt,

37

Storm support for Transactional

Topologies

There are three kinds of bolts possible in a
transactional topology
BasicBolt

This bolt does not deal with batches of tuples and just
emits tuples based on a single tuple of input

BatchBolt

This bolt processes batches of tuples

execute is called for each tuple, and finishBatch is called when the
batch is complete

38

24/05/2017

19

Storm support for Transactional

Topologies

BatchBolt that is marked as committers

The only difference is that this bolt implement the
commit phase

The commit phase is guaranteed to occur only after all
prior batches have successfully committed, and it will be
retried until all bolts in the topology succeed the commit
for the batch

There are two ways to make a BatchBolt a committer
By having the BatchBolt implement the ICommitter marker
interface

Or by using the setCommiterBolt method in
TransactionalTopologyBuilder

39

Storm support for Transactional

Topologies

When using transactional topologies, Storm
does the following for you

Manages state

Storm stores in Zookeeper all the state necessary to do
transactional topologies
This includes the current transaction id as well as the metadata
defining the parameters for each batch
Coordinates the transactions

Storm will manage everything necessary to determine
which transactions should be processing or committing
at any point

24/05/2017

20

Storm support for Transactional

Topologies

Fault detection

Storm leverages the acking framework to efficiently
determine when a batch has successfully processed,
successfully committed, or failed

Storm will then replay batches appropriately

You don't have to do any acking or anchoring

First class batch processing API

Storm layers an APl on top of regular bolts to allow for batch
processing of tuples
Storm manages all the coordination for determining when a
task has received all the tuples for that particular transaction
Storm will also take care of cleaning up any accumulated
state for each transaction

Like the partial counts

Storm support for Transactional

Topologies

Note that transactional topologies require a
source queue (a spout) that can replay an
exact batch of messages
Some technologies, e.g., Apache Kafka, can doit
Some others, e.g., Kestrel, cannot do this

24/05/2017

21

Transactional Topology: Example

Example

Implementation of a transactional topology that
computes the global count of tuples from the
input stream

We use a predefined transactional spout that
emits batches of words

MemoryTransactionalSpout

43

Transactional Topology: Topology

MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA, new
Fields("word"), PARTITION_TAKE_PER_BATCH);

TransactionalTopologyBuilder builder =
new TransactionalTopologyBuilder("global-count", "spout", spout, 3);

builder.setBolt("partial-count", new BatchCount(), 5).shuffleGrouping("spout");

builder.setBolt("sum", new UpdateGlobalCount()).globalGrouping("partial-count");

44

24/05/2017

22

Transactional Topology: Topology

TransactionalTopologyBuilder builder

MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA, new
Fields("word"), PARTITION_TAKE_PER_BATCH);

[new TransactionalTopologyBuilder("global-count™, "spout”, spout, 3); |

builder.setBolt("partial-count", new B

builder.setBolt("sum", new UpdateGlg

htchCount(), 5).shuffleGrouping(“spout");

balCount()).globalGrouping("partial-count");

Each transactional topology has a

defined in the constructor of TransactionalTopologyBuilder

single TransactionalSpout that is

45

Transactional Topology: Topology

TransactionalTopologyBuilder builder

MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA, new
Fields("word"), PARTITION_TAKE_PER_BATCH);

new TransactionalTopologyBuilder("global-count", "spout", spout, 3);

builder.setBolt("partial-count", new BatchCount(), 5).shuffleGrouping("spout");

builder.setBolt("sum", new UpdateGlobalCount()).globalGrouping("partial-count");

\

The specification of the bolts is similar to that of the other topologies.
However, in this case we are using bolts managing batches of tuples

46

24/05/2017

23

Transactional Topology: Topology

MemoryTransactionalSpout spout = new MemoryTransactionalSpout(DATA, new
Fields("word"), PARTITION_TAKE_PER_BATCH);

TransactionalTopologyBuilder builder =
new TransactionalTopologyBuilder("global-count", "spout", spout, 3);

builder.setBolt("partial-count", new BatchCount(), 5).shuffleGrouping("spout");

builder.setBolt("sum", new UpdateGlobalCount()).globalGrouping("partial-count");

\

- The first bolt randomly partitions the input stream using a shuffle grouping
and emits the count for each partition

- The second bolt does a global grouping and sums together the partial counts
to get the count for the batch

47

Transactional Topology:

BatchCount

public static class BatchCount extends BaseBatchBolt {
Object id;
BatchOutputCollector collector;

int count = o;

@Override

public void prepare(Map conf, TopologyContext context, BatchOutputCollector
collector, Object id) {
this.collector = collector;
this.id = id;

}

@Override
public void execute(Tuple tuple) {
count++;

}

48

24/05/2017

24

Transactional Topology:

BatchCount

I public static class BatchCount extends BaseBatchBolt { ‘|

Objectid;
BatchOutputCollector collveN

intcount =o; BaseBatchBolt is the abstract class that must
be implemented to process batches of tuples

@Override
public void prepare(Map conf, TopologyContext context, BatchOutputCollector
collector, Object id) {
this.collector = collector;
this.id = id;
}

@Override
public void execute(Tuple tuple) {
count++;

}

49

Transactional Topology:

BatchCount

‘ public static class BatchCount extends BaseBatchBolt { ‘|

Objectid;
BatchOutputCollector coll;m\

int count = o; A new instance of this class is created for
every batch that is being processed

@Override
public void prepare(Map conf, TopologyContext context, BatchOutputCollector
collector, Object id) {
this.collector = collector;
this.id = id;
}

@Override
public void execute(Tuple tuple) {
count++;

}

50

24/05/2017

25

Transactional Topology:

BatchCount

Object id;
BatchOutputCollector collector;

int count = o;

@Override
collector, Object id) {
this.collector = collector;

this.id = id;
§

@Override
public void execute(Tuple tuple) {
count++;

}

public void prepare(Map conf, TopologyContext

public static class BatchCount extends BaseBatchBolt {

We must store the collector and the id of the
current batch

ext, BatchOutputCollector

Transactional Topology:

BatchCount

Object id;
BatchOutputCollector collector;

int count = o;

@Override
collector, Object id) {
this.collector = collector;
this.id = id;

}

@0Override

public static class BatchCount extends BaseBatchBolt {

public void prepare(Map conf, TopologyContext context, BatchOutputCollector

This method processes one tuple at a time.
It is used to update local variables that are
consider at the end of the processing of the

public void execute(Tuple tuple) {
count++;

}

batch to emit the final batch result

e

52

24/05/2017

26

Transactional Topology:

BatchCount

@Override
public void finishBatch() {
collector.emit(new Values(id, count));

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("id", "count"));
}
}

53

Transactional Topology:

BatchCount

@Override
public void finishBatch() {
collector.emit(new Values(id, count));

}

@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("id", "count");
}
}

This method is invoked al the end of the processing of the batch, i.e., when all
the tuples of the batch have been processed by the execute method.
It emits the result of this batch and also the batch id

54

24/05/2017

27

Transactional Topology:

UpdateGlobalCount

public static class UpdateGlobalCount extends BaseTransactionalBolt
implements ICommitter §
TransactionAttempt attempt;
BatchOutputCollector collector;
intsum =o;

@Override

public void prepare(Map conf, TopologyContext context, BatchOutputCollector
collector, TransactionAttempt attempt) {
this.collector = collector;
this.attempt = attempt;

}

@Override
public void execute(Tuple tuple) {
sum+=tuple.getinteger(1);

}

55

Transactional Topology:

UpdateGlobalCount

public static class UpdateGlobalCount extends BaseTransactionalBolt
implements ICommitter §

TransactionAttempt attempt;
BatchOutputCollector collector;
intsum =o0;

@Override
public void prepare(Map conf, TopologyContext conte
collector, TransactionAttempt attempt) {

BatchOutputCollector

this.collector = collector;
this.attempt = attempt;
}

extends the BaseBatchBolt class)

@Override

transaction by implementing ICommiter.

This class extends BaseTransactionalBolt (that

It implements also the ICommiter interface.
We tell Storm this is the commit step of the

public void execute(Tuple tuple) {
sum+=tuple.getinteger(1);

}

56

24/05/2017

28

Transactional Topology:

UpdateGlobalCount

public static class UpdateGlobalCount extends BaseTransactionalBolt
implements ICommitter §
TransactionAttempt attempt;
BatchOutputCollector collector;
intsum =o;

@Override
public void prepare(Map conf, TopologyContext context, BatchOutputCollector
collector, TransactionAttempt attempt) {

this.collector = collector;
this.attempt = attempt; The execute method accumulates the count for

1 this batch by summing together the partial
counts emitted by the bolt BatchCount

@OQverride
public void execute(Tuple tuple) {
sum+=tuple.getinteger(1);

}

57

Transactional Topology:

UpdateGlobalCount

@Override
public void finishBatch() {
Value val = DATABASE.get(GLOBAL_COUNT_KEY);
Value newval;
if(val == null || val.txid.equals(attempt.getTransactionld())) {
newval = new Value();
newval.txid = attempt.getTransactionld();
if(val==null) {
newval.count = sum;
}else §
newval.count = sum + val.count;
}
DATABASE.put(GLOBAL_COUNT_KEY, newval);

58

24/05/2017

29

Transactional Topology:

UpdateGlobalCount

@Override
public void finishBatch() {
Value val = DATABASE.get(GLOBAL_COUNT_KEY);
Valuenewval;
if(val == null || 'val.txid.equals(attempt.getTra
newval = new Value();

newval.txid = attempt.getTransactionld();
if(val==null) { Retrieve the last stored global

count and the transaction id of the
last processed transaction from

newval.count = sum;
}else §
newval.count = sum + val.count; the database

}
DATABASE.put(GLOBAL_COUNT_KEY, newval);

59

Transactional Topology:

UpdateGlobalCount

@Override
public void finishBatch() {
Value val = DATABASE.get(GLOBAL_COUNT_KEY);
Value newval;
if(val == null || val.txid.equals(attempt.getTransactionld())) {
newval = new Value();
newval.txid = attempt.getTransactionld();
if(val==null) {
newval.count = sum;
}else §
newval.count = sum + val.count;

}
DATABASE.put(GLOBAL_COUNT_KEY, newval);

} ~
If the transaction id of the current batch is different from the one
stored in the database, then update the count

60

24/05/2017

30

Transactional Topology:

UpdateGlobalCount

@Override
public void finishBatch() {
Value val = DATABASE.get(GLOBAL_COUNT_KEY);
Value newval;
if(val == null || val.txid.equals(attempt.getTransactionld())) {
newval = new Value();
newval.txid = attempt.getTransactionld();
if(val==null) {
newval.count = sum;
}else {
newval.count = sum + val.count;
}
DATABASE.put(GLOBAL_COUNT_KEY, newval);

} D—
If the transaction id of the current batch is equal to the one stored in the
database, then do nothing. This is a replayed batch/transaction.

61

Acking and Failing in Transactional

Topologies

You do not have to do any acking or anchoring
when working with transactional topologies
Storm manages all of that for you in an efficient way
Failing a transaction
When using regular bolts, you can call the fail method

on OutputCollector to fail the tuple trees of which
that tuple is a member

For transactional topologies you must throw a
FailedException exception to fail a batch and cause
the batch to be replayed

Unlike regular exceptions, this will only cause that particular
batch to replay and will not crash the process

62

24/05/2017

31

24/05/2017

Transaction Spouts

Transactional spouts must implement the
TransactionalSpout interface
The TransactionalSpout interface is
completely different from a regular Spout
interface

The classes implementing the TransactionalSpout

interface

Emit batches of tuples

Must ensure that the same batch of tuples is always
emitted for the same transaction id

63

32

