24/05/2017

Trident

Trident topologies

T

Trident

Trident is a high-level abstraction for doing

real-time computing on top of Storm

Trident has consistent, exactly-once

semantics

Trident has many high-level functionalities
Filters, Maps, Joins, Aggregations, Grouping,
Functions, ..

Developing complex applications becomes easier

Trident State

Trident adds primitives for doing stateful,
incremental processing on top of databases
or persistence store

It has first-class abstractions for reading from and

writing to stateful sources

The state can either be stored

internally to the topology
E.g., kept in-memory
or externally to the topology
E.g., stored in a database like Memcached or Cassandra

24/05/2017

Trident State

Trident manages state in a fault-tolerant way

State updates are idempotent in the face of
retries and failures

This lets you reason about Trident topologies as if
each message were processed exactly-once

Trident

Trident topologies are (slightly) slower than
the standard ones
Given by the overhead introduced by exactly-once
semantics and the state management
However, also trident topologies can manage
millions of messages per second

24/05/2017

Streams

Analogously to standard topologies, also the

core data model in Trident is the Stream

A stream is partitioned among the nodes in

the cluster, and operations applied to a
stream are applied in parallel across each

partition

Trident processes each stream as a series of

batches

It is based on batch spouts and bolts

Streams

the cow jumped cver the moon

the man went to the store and bought some candy

the cow jumped cver the moon

four score and seven years ago

the man went to the store and bought some candy

hew many apples can you eat

four score and seven years ago

the cow jumped over the moon

Batch 1

the man went to the store and bought some candy

four score and seven years ago

how many apples can you eat

how many apples can you eat

the cow jumped over the moon

the cow jumped over the mocn

the man went to the store and bought some candy

the man went to the store and bought some candy

four score and seven years ago

Each tuple is a string in this
example

how many apples can you eat

Batch 2

the cow jumped over the moon

the man went to the store and bought some candy

Batch 3

24/05/2017

24/05/2017

Trident

Trident provides a batch processing APl to
process batches of tuples

It provides a set of functions that are applied on one
batch at a time in isolation and emit “local” results

Trident provides also a set of functions for doing
aggregations across batches and persistently
storing those aggregations

i.e., It allows aggregating the “local” results generated
by analyzing each batch in a "global” result associated
with the entire stream

Define Trident topologies

S 0

Trident topologies

Trident topologies are based on
Spouts
Only batch spouts are used by Trident
Streams
Defined on top of spouts
High-level operations applied on top of streams

These operations are automatically transformed in bolts
by Trident

Trident topologies

Trident topologies are defined by using the
TridentTopology class
The streams of the topology are defined by
using the newStream(..) method of
TridentTopology

It defines a stream on top of a batch spout
The rest of the topology is defined by means
of the high-level operations provide by
Trident

24/05/2017

Trident topologies: Example

In this example we create a simple Trident
topology that

Has one spout emitting a sequence of words
This spout is based on a class provided by Storm

Has one stream defined on top of the spout

Prints the content of the stream on the standard
output

13

Trident topologies: Example

package.....
import ...

public class TridentExample {
public static void main(String[] args) throws Exception {

/I Define a spout that continuous emits the same sequence of words
FixedBatchSpout spout = new FixedBatchSpout(new Fields("word"), 4,
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("word4"),
new Values("words"), new Values("word6"),
new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word1o"));

spout.setCycle(true);

14

24/05/2017

Trident topologies: Example

package.....
import ...

Schema of the emitted tuples

public class TridentExample {

public static void main(String[] args) throws Exception {

// Define a spout that continuous emits the samesequencé of words
FixedBatchSpout spout = new FixedBatchSpout(new Fields("word")| 4,
new Values("word1"), new Values("word2™),
new Values("word3"), new Values("word4"),
new Values("words"), new Values("word6"),
"
"

new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word1o"));

spout.setCycle(true);

15

Trident topologies: Example

package.....
import ...

Max number of tuples per batch
public class TridentExample { xnv upesp

public static void main(String[] args) throws Exception {

/I Define a spout that continuous emits the same sequence of words
FixedBatchSpout spout = new FixedBatchSpout(new Fields("word"),
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("word4"),
new Values("words"), new Values("word6"),
(
(

new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word1o"));

spout.setCycle(true);

16

24/05/2017

Trident topologies: Example

package.....
import ...

Emitted tuples

public class TridentExample {

public static void main(String[] args) throws Exceptig

// Define a spout that continuous emit;
FixedBatchSpout spout = new Fix
new Values("word1"), new Values("word2"),
new Values("word3"), new Values("word4"),
new Values("words"), new Values("word6"),
"
"

e same sequence of words
atchSpout(new Fields("word"), 4,

new Values("word7"), new Values("word8"),
new Values("wordg"), new Values("word10"))

spout.setCycle(true);

17

Trident topologies: Example

TridentTopology topology = new TridentTopology();

/I Define a stream of the topology
Stream outputStream = topology.newStream("spout1", spout);

// Print on the standard output the tuples emitted by outputStream
outputStream.peek(new Consumer() {
@Override
public void accept(TridentTuple input) {
System.out.printIn(input.getStringByField("word"));
}
b;

18

24/05/2017

24/05/2017

Trident topologies: Example

TridentTopology topology = new TridentTopology();

[/ Define a stream of the topology
“Stream outputStream = topology.newStream("spout1", spout);

// Print on the standard output thatuples emitted by outputStream
outputStream.peek(new Consume
@Override
public void accept(TridentTupte input) §
System.out.printIn(input.getStringByField("word"));
}
Di

Definition of a stream based on spout

19

Trident topologies: Example

TridentTopology topology = new TridentTopology();

/I Define a stream of the topology
Stream outputStream = topology.newStream("spout1", spout);

// Print on the standard output the tuples emitted by outputStream
outputStream.peek(new Consumer() {
@Override
public void accept(TridentTuple input) {
System.out.printIn(input.getStringByField("word"));

}

D;

i

Application of the peek operation on the stream.
In this case the peek operation is used to print the tuples of the stream on
the standard output.

20

10

Trident topologies: Example

Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];
StormSubmitter.submitTopology(topologyName, conf,
topology.build());
}else {
System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

21

Trident topologies: Example

Config conf = new Config(); Configuration of the topolo
conf.setDebug(false); ./“ 9 pology |

conf.setNumWorkers(3);

if (args != null && args.length > 0) {
String topologyName = args[o];
StormSubmitter.submitTopology(topologyName, conf,
topology.build());
}else §
System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

22

24/05/2017

11

Trident topologies: Example

Config conf = new Config(); [Submission of the topology |
conf.setDebug(false);

conf.setNumWorkers(3);

if (args != null && args.length > 0) {

String topologyName = args[e7;

StormSubmitter.submitTopology(topologyName, conf,
topology.build());

}else §
System.out.printIn("storm jar target/example-1.0.0.jar
TridentExample <topology name>");

23

Operations in Trident

. 00 s

24/05/2017

12

Classes of Operations in Trident

There are five classes of operations in Trident

Operations that apply locally to each partition and
cause no network transfer

Repartitioning operations that repartition a
stream but do not change the contents (involves
network transfer)

Aggregation operations that do network transfer
as part of the operation

Operations on grouped streams
Merges and joins

Partition-local operations

. 00 s

24/05/2017

13

Partition-local operations

Partition-local operations are applied on each
batch partition in isolation

They generate one result for each batch partition
They involve no network transfer

The tuples of each batch partition are all in the

same node and the generated results are “kept” in
the same node

Partition-local operations

The provided partition-local operations are:
peek
filter
project
map and flatMap
each
min and minBy
max and maxBy
partitionAggregate
Windowing

24/05/2017

14

peek

peek() is used to perform an action on each
tuple of the flow as they flow through the
stream

It does not chance the values of the tuples
The output of this operation (in terms of tuples) is equal
toits input
It is usually used for debugging to see the
tuples as they flow at a certain pointin a

pipeline of Trident operations

peek

The peek() method has one single parameter

The parameter is an object of a class
implementing the Consumer interface
The public void accept(TridentTuple input) method must
be implemented

It contains the action that you want to execute based on the
content of the input tuple

24/05/2017

15

peek: Example

INPUT STREAM

test
the

Storm

STANDARD OUTPUT

test
the
Storm

peek: Example

/I Define a stream of the topology
Stream outputStream = topology.newStream("spout1", spout);

/| Print on the standard output the tuples emitted by outputStream

}

Di

outputStream.peek(new Consumer() {
@Override
public void accept(TridentTuple input) {

System.out.printIn(input.getStringByField("word"));

N

This peek operation prints the content of each tuple of

the input stream on the standard output

32

24/05/2017

16

filter

filter() is used to select a subset of the input
tuples based on a constraint

Only the tuples satisfying the constraint are
emitted by the filter operation and are sent to the
next operation of the topology

The schema of the output stream is equal to the
schema of the input stream

filter

The filter() method has one single parameter

The parameter is an object of a class extending
the BaseFilter abstract class

The public boolean isKeep(TridentTuple tuple) method
must be implemented

It contains the logic that is used to check if the constraint is
satisfied

It returns true if the tuple satisfies the constraint/filter. Otherwise,
it returns false

24/05/2017

17

filter: Example

INPUT STREAM OUTPUT STREAM
test test
the the

Storm

35

filter: Example

Stream outputStream = topology
.newStream("spout1", spoutk.filter(new SelectionRule());

This filter emits only the tuples that satisfy the constraint
specified in the SelectionRule

36

24/05/2017

18

filter: Example

package...
import ...

public class SelectionRule extends BaseFilter {

@Override

public boolean isKeep(TridentTuple tuple) {

if (tuple.getStringByField("word").charAt(o) == 't')
return true;

else
return false;

}

This method implements the constraint/filter that we
want to apply

37

project

project() is used to select a subset of fields of
the input tuples

The project() method has one single parameter
The parameter is the list of fields that we want to keep

38

24/05/2017

19

project: Example

INPUT STREAM OUTPUT STREAM
Paolo Garza Paolo
Andrea Rossi Andrea
Paolo Bianchi Paolo

39

project: Example

Stream outputStream = topology
.newStream("spout1", spoutlt.project(new Fields("name"));

________ /

This operation emits a new stream
containing only the name field

24/05/2017

20

24/05/2017

map() is used to transform the tuples

It returns a stream consisting of the result of
applying the given mapping function on the tuples
of the input stream

The mapping function is applied on one tuple at a time

It is a one-to-one transformation applied on the
input tuples

The tuples emitted by the map() operation
have the same number of fields of the input
tuples

Also the names of the fields are the same
But the data types of the fields of the emitted
tuples can be different from those of the
input tuples

E.g., you can apply a map function that receives

as input a string and returns its length (i.e., it is
applied on a string and returns a long)

21

The map() method has one single parameter
The parameter is an object of a class
implementing the MapFunction interface

The public Values execute(TridentTuple input)
method must be implemented

It applies a transformation on the input tuple and
returns the new one

43

map: Example

INPUT STREAM OUTPUT STREAM
test TEST
the THE

Storm STORM

44

24/05/2017

22

map: Example

Stream outputStream = topology
.newStream("spout1", spoutl.map(new UpperClass()); “

________ /

This map operation applies the transformation specified in UpperClass
on the tuples of the input stream and emits a new stream

45

map: Example

package...
import ...

public class UpperClass implements MapFunction {
@Override

public Values execute(TridentTuple input) {
return new Values(input.getStringByField("word").toUpperCase());

}

This method returns a new tuple where the value of the
word field is converted to its upper case version

46

24/05/2017

23

24/05/2017

flatMap

flatMap() is used to transform the tuples

It returns a stream consisting of the result of
applying the given flat-mapping function on the
tuples of the input stream

The mapping function is applied on one tuple at a time
It is a one-to-many transformation applied on the
input tuples

i.e., it can emits many new tuples for each input tuple

flatMap

The tuples emitted by the flatMap()
operation have the same number of fields of
the input tuples

Also the names of the fields are the same
But also in this case the data types of the
fields of the emitted tuples can be different
from those of the input tuples

24

flatMap

The flatMap() method has one single
parameter

The parameter is an object of a class
implementing the FlatMapFunction interface

The public Iterable<Values> execute(TridentTuple
tuple) method must be implemented

It applies a transformation on the input tuple and
returns an iterable over the list of returned new tuples

49

flatMap: Example

INPUT STREAM OUTPUT STREAM
Test of flatMap Test
This is a sentence of
flatMap
This

is
a

sentence

50

24/05/2017

25

flatMap: Example

Stream outputStream = topology
.newStream("spouti", spouth.flatMap(new Split()); “

This flatMap operation applies the transformation specified in Split on
the tuples of the input stream and emits a new stream

flatMap: Example

package....
import ...

public class Split implements FlatMapFunction {
@Override

public Iterable<Values> execute(TridentTuple tuple) {
List<Values> valuesList = new ArrayList<>();

for (String word : tuple.getStringByField("sentence").split(" ")) {
valuesList.add(new Values(word));

}

return valuesList;

This method splits the input string in words and returns
one new tuple for each word

52

24/05/2017

26

each

each() is used to analyze the input tuples and
emit a set of new tuples
It returns a stream consisting of the result of applying
a given function on the tuples of the input stream
The mapping function is applied on one tuple at a time
It is a one-to-many transformation applied on the
input tuples
It can return from o to many tuples

Given an input tuple, if the applied function emits no tuples
for that input tuple, the original input tuple is filtered out

each

The tuples emitted by the each() operation
have a schema composed of

The fields of the input tuples

And the fields generated by the applied function
The values of the original fields are equal to
values of the original tuple
The values of the new fields are based the
applied function

24/05/2017

27

each

The each(inputFields, function, functionFields)
method has three parameters
inputFields
The fields of the input tuples that are used to compute the
values of the new fields of the emitted tuples
function is an object of a class extending the
BaseFunction class
The public void execute(TridentTuple tuple, TridentCollector

collector) method must be implemented

It emits the values of the new fields for the new tuples (from o to
many new tuples)

each

functionFields

The new fields of the output tuples that are generated
by the applied function

24/05/2017

28

each: Example

INPUT STREAM OUTPUT STREAM
test test TEST
the the THE
Storm Storm STORM

57

each: Example

Stream outputStream = topology
.newStream("spout1", spout)
“ .each(new Fields("word"), new AddField(), new Fields("wordUpper"));

________ \

This each operation extends the input tuples with a new field
(wordUpper) containing the upper version of the value of word field of
the input tuples

58

24/05/2017

29

each: Example

Stream outputStream = topology
.newStream("spouti1", spout)

.each(new Fields("word")| new AddField(), new Fields("wordUpper"));

[Input fields I

59

each: Example

Stream outputStream = topology
.newStream("spout1", spout)
.each(new Fields("word"), newAddFieId(),|

new FieIds(“wordUpper")w;

[New output fields |

60

24/05/2017

30

each: Example

Stream outputStream = topology
.newStream("spout1", spout

.each(new Fields("word"), new AddField(), new Fields("wordUpper"));

It contains the function that is applied to
generate the content of the new fields

61

each: Example

package...
import ...

@0Override

public class AddField extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {
collector.emit(new Values(tuple.getStringByField("word").toUpperCase()));
}

This method returns the value of the new attribute
based on the value of the input attribute

62

24/05/2017

31

minBy

minBy() is used to select the tuple associated
with the minimum value, for the specified
field, for each partition
It returns a tuple for each partition
The one associated with the minimum value in the
partition
If many tuples of a partition are associated with
the minimum value, only one tuple is returned
The schema of the output stream is equal to the
schema of the input stream

minBy

The minBy(inputFieldName) method has one

single parameter
The name of the field on top of which the
minimum is computed

24/05/2017

32

minBy: Example

INPUT STREAM OUTPUT STREAM
Partition 1 Partition 1
Paolo 10 Andrea 2
Andrea 2
Partition 2 Partition 2
Luca 3 Luca 3
Paolo 5
65

minBy: Example

Stream outputStream = topology
.newStream("spout1", spout).minBy("count");

This operation emits one tuple per partition:
- The tuple associated with the minimum “count” value in each partition

66

24/05/2017

33

min() is similar to minBy but it is based on a user
defined class to compare tuples

It allows considering many fields during the
comparison operation

It returns a tuple for each partition

The one associated with the minimum value in the partition
If many tuples of a partition are associated with the
minimum value, only one tuple is returned

The schema of the output stream is equal to the
schema of the input stream

The min(comparator) method has one single
parameter

The parameter is an object of a class

implementing the interfaces

Comparator<TridentTuple> and Serializable
The publicint compare(TridentTuple tuplea,
TridentTuple tuple2) method must be implemented

It contains the logic that is used to compare tuples
It returns the result of the comparison

24/05/2017

34

min: Example

INPUT STREAM

Partition 1
Paolo

Andrea

Partition 2
Luca

Paolo

OUTPUT STREAM
Partition 1
10 Andrea
2
Partition 2
3 Luca
5

69

min: Example

Stream outputStream = topology
.newStream("spout1", spoutlt.min(new MinCount());

e

MinCount is the class used to compare the
tuples of the input stream

70

24/05/2017

35

min: Example

package...
import ...

public class MinCount implements Comparator<TridentTuple>, Serializable{

private static final long serialVersionUID = 1L;

@Override
public int compare(TridentTuple tuplez, TridentTuple tuple2) {
return tuple1.getintegerByField("count")
.compareTo(tuple2.getintegerByField("count"));

} \

It returns the result of the comparison of two tuples

71

max and maxBy

max () and maxBy() return the tuple
associated with the maximum value on each
partition of a batch of tuples in a Trident
stream

The usage of max () and maxBy() is
analogous to the usage of min() and minBy()

72

24/05/2017

36

partitionAggregate

partitionAggregate() computes one result per
partition and emits the result as a new stream of
tuples
It returns a stream consisting of the tuples obtained
by applying an “aggregate” function on one partition
at atime

The “aggregate” function is applied on the complete set of
tuples of each partition

It is a one-to-many transformation applied on the
input partitions
It can return from o to many tuples per partition

73

partitionAggregate

The tuples emitted by the
partitionAggregate() operation have the
schema specified during the invocation of the
operation

Hence, the output stream has a schema that is

usually different with respect to the one of the
input stream

74

24/05/2017

37

partitionAggregate

The partitionAggregate(inputFields,
aggregator, functionFields) method has three
parameters

inputFields

The fields of the input tuples that are used to compute
the final result (i.e., the values of the emitted tuples)

aggregator is an object of a class extending the
BaseAggregator class

It contains the logic needed to aggregate tuples

75

partitionAggregate

functionFields

The fields of the output tuples that are generated by the
applied function
i.e., The schema of the output stream

76

24/05/2017

38

partitionAggregate

Trident provides a set of predefined
aggregators

Count()

Sum()

But you can implement your own
aggregators if needed

77

partitionAggregate: Example

INPUT STREAM OUTPUT STREAM
Partition 1 Partition 2
Paolo 10 12
Andrea 2
Partition 2 Partition 2
Luca 3 8
Paolo 5
78

24/05/2017

39

partitionAggregate: Example

Stream outputStream = topology
.newStream("spouta1", spout)
“ .partitionAggregate(new Fields("count"), new Sum(), new Fields("sum"));

________ 7

This operation sums the values of the count field in each partition and
emits one tuple for each partition.
The schema of the emitted stream of tuples is “sum”

79

partitionAggregate: Example

Stream outputStream = topology
.newStream("spout1", spout)

.partitionAggregate(new Fields("count"),|new Sum()} new Fields("sum"));

This operation is based on a predefined aggregator: Sum

8o

24/05/2017

40

partitionAggregate: Example

Stream outputStream = topology
.newStream("spout1", spout)
.partitionAggregate(]bew Fields("count")ﬂ new Sum(), new Fields("sum"));

This Sum aggregator sums the values of the input field “count”

81

partitionAggregate: Example

Stream outputStream = topology
.newStream("spout1", spout)
.partitionAggregate(new Fields("count"), new Sum(),

new Fields("sum"));|

The result is associated with the “sum” field of the output stream

82

24/05/2017

41

partitionAggregate: Example #2

INPUT STREAM OUTPUT STREAM
Partition 1 Partition 1
Paolo 10 12
Andrea 2
Partition 2 Partition 2
Luca 3 8
Paolo 5

The same example implemented by using a personalized aggregator

83

partitionAggregate: Example #2

Stream outputStream = topology
.newStream("spout1", spout)
.partitionAggregate(new Fields("count"), new MySum(), new Fields("sum"));

84

24/05/2017

42

partitionAggregate: Example #2

Stream outputStream = topology
.newStream("spout1", spout)

.partitionAggregate(new Fields("count"),|new MySum(), new Fields("sum"));

This operation is based on the user-define class MySum

85

partitionAggregate: Example #2

package...

public class SumState {
long sum = o;

i

The MySum class uses the SumState class as an accumulator
that is used to store the current sum during the analysis of the
tuples of the partition.

}

86

24/05/2017

43

partitionAggregate: Example #2

package...
import ...

public class MySum extends BaseAggregator<SumState> {

@Override
public SumState init(Object batchld, TridentCollector collector) §
return new SumState();

}

@Override
public void aggregate(SumState State, TridentTuple tuple, TridentCollector
collector) {
State.sum+=tuple.getintegerByField("count");
}

87

partitionAggregate: Example #2

This method is used to initialize the “accumulator”/state.

The init method is called before processing the partitition.

The return value of init is an Object that will represent the state of the

aggregation and will be passed to the aggregate and complete methods.
¥

@Override
public SumState init(Object batchld, TridentCollector collector) §
return new SumState();

}

@Override
public void aggregate(SumState State, TridentTuple tuple, TridentCollector
collector) {
State.sum+=tuple.getintegerByField("count");
}

88

24/05/2017

44

partitionAggregate: Example #2

package...
import ...

public class MySum extends BaseAggregator<SumState> {

This method is usually used to update the value of the global state
combining it with the current tuple.

The aggregate method is called for each input tuple in the partition.
This method can update the state and optionally emit tuples.

7
@Override

public void aggregate(SumState State, TridentTuple tuple,
TridentCollector collector) {

State.sum+=tuple.getintegerByField("count");

89

partitionAggregate: Example #2

@Override

public void complete(SumState State, TridentCollector collector) {
collector.emit(new Values(State.sum));
}

; \
This method is used to emit the result, based on the value of the state object.

The complete method is called when all tuples of the current partition have been
processed by the aggregate method.

24/05/2017

45

partitionAggregate

There are other two interfaces that can be
used for defining aggregators
CombinerAggregator
ReducerAggregator
They are less general than the
BaseAggregator class

CombinerAggregator

public interface CombinerAggregator<T>
extends Serializable §{

T init(TridentTuple tuple);

T combine(T valz, T val2);

T zero();
}
CombinerAggregators return a single tuple
with a single field as output

24/05/2017

46

CombinerAggregator

The CombinerAggregator

Runs the init() method on each input tuple
The method returns a single value
Uses the combine() method() to combine the
values returned by the init() method until there is
only one value left
This is the final result/final tuple emitted by the
CombinerAggregator
If the partition is empty, the CombinerAggregator
emits the output of the zero function

93

ReducerAggregator

public interface ReducerAggregator<T>
extends Serializable §{

T init();

T reduce(T curr, TridentTuple tuple);
}
ReducerAggregators return a single tuple
with a single field as output

94

24/05/2017

47

ReducerAggregator

The ReducerAggregator
Produces an initial value by invoking the init()
method
Then it iterates on that value for each input tuples
to produce a single tuple with a single value as
output

95

Windowing

Trident has support for grouping tuples in
windows and processing one window at a
time

Windows are specified with the following two
parameters

Window length
The number of tuples or time duration of the windows

Sliding interval
The interval at which the windowing slides

96

24/05/2017

48

Sliding Window

Tuples are grouped in windows and window
slides every sliding interval

A tuple can belong to more than one window
Example

A time duration based sliding window with length 10
secs and sliding interval of 5 seconds

|e1e2e3|ese5ebe7|e8egelo|...

0 5 10 15 <-time
|<---------- W1 --------- >|
|------------ W2 -------- >|

97

Tumbling Window

Tuples are grouped in a single window based on
time or count

Any tuple belongs to only one of the windows
Example

A time duration based tumbling window with length 5

secs

|e1e2e3|ese5ebe7|e8egeio|...
0 5 10 15 <-time

|<-- wi-->|<----w2---->|<-- w3---> ..

98

24/05/2017

49

window

The window() methods can be used to
specify

How windows are defined
How the values in each window are aggregated to

generate the emitted tuples

99

Sliding Window: Example

INPUT STREAM OUTPUT STREAM
Paolo 10 10
Andrea 2 12
Luca 3
Paolo 5

Window type: Sliding window
Tuples per window: 2
Sliding interval: 1

24/05/2017

50

24/05/2017

Sliding Window: Example

Stream outputStream = topology
.newStream("spout1", spout)
-window(SlidingCountWindow.of(2, 1),

new Fields("count"),
new MySum(),
new Fields("sum"));

Sliding Window: Example

Stream outputStream = topology
.newStream("spouta", spout)
.windoM(SIidingCountWindow.of(z, 1),

new Fields("coynt"),
new MySum(),
new Fields("sum"))}

Definition of the window type and characteristics

51

Sliding Window: Example

Stream outputStream = topology
.newStream("spout1", spout)
window(SlidingCountWindow.of(2, 1),

new Fields("count"),

new MySum(),

new Fields("sum"));

________ S

Description of the aggregation operation applied on each window

103

Sliding Window: Example

package...
public class SumState {

long sum = o;

}

104

24/05/2017

52

Sliding Window: Example

package...
import ...

public class MySum extends BaseAggregator<SumState> {

@Override
public SumState init(Object batchld, TridentCollector collector) §

return new SumState();

}

@Override
public void aggregate(SumState State, TridentTuple tuple, TridentCollector

collector) {
State.sum+=tuple.getintegerByField("count");

}

105

Tumbling Window: Example

INPUT STREAM OUTPUT STREAM
Paolo 10 12
Andrea 2 8
Luca 3
Paolo 5

Window type: Tumbling window
Tuples per window: 2

106

24/05/2017

53

Tumbling Window: Example

Stream outputStream = topology
.newStream("spout1", spout)
window(TumblingCountWindow.of(2),

new Fields("count"),
new MySum(),
new Fields("sum"));

107

Tumbling Window: Example

Stream outputStream = topology
.newStream("spouta", spout)
.windoM(TuminngCountWindow.of(z),

new Fields("coynt"),
new MySum(),
new Fields("sum"))}

Definition of the window type and characteristics

108

24/05/2017

54

24/05/2017

Repartitioning operations

EE— 0000 oo

Repartitioning operations

Analogously to “traditional” streams and
topologies also in the Trident topology we
can specify how tuples are partitioned across
tasks

Specifically, the repartitioning operations are

used to specify how to partition data across
tasks

55

Repartitioning operations

Repartitioning operations:
shuffle

Use random round robin algorithm to evenly
redistribute tuples across all target partitions

broadcast
Every tuple is replicated to all target partitions
partitionBy

partitionBy takes in a set of fields and does semantic
partitioning based on that set of fields

Repartitioning operations

global

Alltuples are sent to the same partition
The same partition is chosen for all batches in the stream.

batchGlobal

All tuples in the batch are sent to the same partition
Different batches in the stream may go to different partitions
partition

This method takes in a custom partitioning function that
implements
org.apache.storm.grouping.CustomStreamGrouping

24/05/2017

56

parallelismHint

parallelismHint () is used to specify the
parallelism of a Trident topology or a subset
of its pipeline

113

Repartitioning operations: example

Stream outputStream = topology.newStream("spout1", spout)
.shuffle()
.map(new Upper&lass())
.parallelismHint(4);

Application of the shuffle repartitioning
operation on the stream emitted by the spout

24/05/2017

57

24/05/2017

Aggregation operations

EE— 0000 oo

Aggregation operations

Trident has aggregate and
persistentAggregate operations for doing

aggregations on Streams at the batch and at
the global level

58

aggregate

aggregate() is run on each batch of the
stream in isolation and emits one tuple per
batch

It is similar to partitionAggregate but it works at
the batch level

aggregate: Example

INPUT STREAM OUTPUT STREAM
Batcha Batch1
Paolo 10 12
Andrea 2
Batch 2 Batch 2
Luca 3 8
Paolo 5
118

24/05/2017

59

aggregate: Example

Stream outputStream = topology
.newStream("spouta1", spout)
“ .aggregate(new Fields("count"), new Sum(), new Fields("sum™)); H

________ /

This operation sums the values of the count field in each batch and
emits one tuple for each batch.
The schema of the emitted stream of tuples is “sum”

119

aggregate: Example

Stream outputStream = topology
.newStream("spout1", spout)

.aggregate(new Fields("count"), new Fields("sum"));

This operation is based on a predefined aggregator: Sum

24/05/2017

60

persistentAggregate

persistentAggregate() aggregates on all tuples
across all batches in the stream
It stores the resultin a “source” of state

The result is continuously updated

It is updated every time a new batch has been completely
analyzed

The state can be stored

In an internal “variable” of the topology that is kept in
main memory

In an external database like Memcached or Cassandra

persistentAggregate

persistentAggregate() is used to compute
continuously evolving values
E.g., the number of processed tuples,
The sum of a field over the complete stream
The state can be transformed in a stream if it
is needed
It can be processed by other elements of the
topology

122

24/05/2017

61

persistentAggregate: Example

INPUT STREAM
Batch 1
Paolo
Andrea
Batch 2
Luca
Paolo

OUTPUT STREAM
12
10 20
2
3
5

123

persistentAggregate: Example

TridentState outputState =
topology.newStream("spout1", spout)
.persistentAggregate(new MemoryMapState.Factory(),

new Fields("count"),
new Sum(),
new Fields("sum"));

\

This operation sums the values of the count field in each batch. When
the computation is completed the “global count” state stored in a
MemoryMapState object is updated.

The “global count” is continuously updated.

124

24/05/2017

62

persistentAggregate: Example

TridentState outputState =
topology.newStream("spout1", spout)
-persistentAggregate(new MemoryMapState.Factory(), |

new Fields("coyAt™),
new Sum(),

~

MemoryMapState is a Trident class than can
be used to store a state in main memory

125

persistentAggregate: Example

| TridentState outputState o

opology.newStream("spout1", spout)
istentAggregate(new MemoryMapState.Factory(),
new Fields("count"),

new Sum(),

new Fields("sum"));

The output of this pipeline of the topology is a Trident State
(it is not a stream)

126

24/05/2017

63

persistentAggregate: Example

outputStatd.newValuesStream()|peek(new Consumer() {
@0Override
public void acdept(TridentTuple input) {
Systeln.out.printIn(input.getLongByField("sum™));

}

The newValuesStream() method can be used to create a stream of tuple
from a Trident State.
The stream contains one tuple for each update of the Trident State variable

127

persistentAggregate: Example

outputState.newValuesStream().peek(new Consumer() {
@Override
public void accept(TridentTuple input) {
System.out.printIn(input.getLongByField("sum™));
}

________ 7

This code print on the standard output the content of the stream generated
from the Trident State variable.

128

24/05/2017

64

24/05/2017

Operations on grouped
streams

EE— 0000 oo

Grouped streams

The groupBy operation
Repartitions the stream by executing a
partitionBy operation on the specified fields

And then, within each partition, groups tuples
together whose group fields are equal
All the tuples (of a batch) with the same value
are grouped in the same group

130

65

24/05/2017

Grouped streams

our
our
rou
wand"
° rou|
‘score” Group by
‘‘‘‘‘ "word Partition 1
Partition 2
“the”
the
"and”
our 'th
four’
"the" Group
Partition 3 " .
Group
Partition 2

Grouped streams

If you run aggregators on a grouped stream,
the aggregation will be computed within
each group instead of against the whole
batch

persistentAggregate() can also be run on a
GroupedStream

The results will be stored in a MapState with the
key being the grouping fields

66

Grouped streams: Example

INPUT STREAM

Batch 1
Paolo
Andrea

Paolo

Batch 2
Luca
Paolo

Luca

OUTPUT STREAM
Batcha
10 Paolo 33
2 Andrea 2
23
Batch 2
3 Luca 9
5 Paolo 5

133

Grouped streams: Example

Stream outputStream = topology
.newStream("spout1", spout)
.groupBy(new Fields("word"))
.aggregate(new Fields("count"), new Sum(), new Fields("sum"));

134

24/05/2017

67

Grouped streams: Example

Stream outputStream = topology
.newStream("spout1", spout)
.groupBy(new Fields("word"))

, new Sum(), new Fields("sum"));

For each batch of tuples, this method creates one
group for each value of the “word” field

135

Grouped streams and

persistentAggregate: Example

INPUT STREAM OUTPUT STREAM
Batch1 Paolo 33
Paolo 10 Andrea 2
Andrea 2 Luca 9
Paolo 23 Paolo 38
Batch 2
Luca 3
Paolo 5
Luca

136

24/05/2017

68

24/05/2017

Grouped streams and

persistentAggregate: Example

Stream outputStream = topology
.newStream("spout1", spout)
.groupBy(new Fields("word"))
.persistentAggregate(new MemoryMapState.Factory(),
new Fields("count"),
new Sum(),
new Fields("sum"));

137

Merges and joins

~

69

The simplest way to combine streams is to
merge them into one stream

The merge() method can be used to merge a
set of streams

Trident will name the output fields of the
new, merged stream as the output fields of
the first stream

The merged streams must have the same number
of fields and data types

139

Merge: Example

INPUT INPUT

STREAM 1 STREAM 2 OUTPUT STREAM
Paolo Luca Paolo
Andrea Paolo Andrea
Paolo Luca Paolo

Luca
Paolo

Luca

140

24/05/2017

70

Merge: Example

/| Define two streams
Stream outputStreama1 = topology.newStream("spouti1", spouti);
Stream outputStreamz2 = topology.newStream("spout2", spout2);

/| Merge the two streams
Stream outputStream = topology.merge(outputStreamsi, outputStream?2);

141

Merge: Example

/| Define two streams
Stream outputStreama1 = topology.newStream("spout1", spouti);
Stream outputStream2 = topology.newStream("spout2", spout2);

/| Merge the two streams
Stream outputStream = topologyi‘merge(outputStream1, outputStreamz2);

________ -

The merge method can be used to also to merge
more than two streams

142

24/05/2017

71

24/05/2017

Joins

Another way to combine streams is with a

join

Standard SQL joins require finite inputs
They are non applicable to infinite streams

Joins in Trident only apply within each small

batch that comes off of the spouts

143

Joins: Example

An example of a join between a stream
containing fields ["key", "val1", "val2"] and
another stream containing ["x", "val1"]

topology.join(streamza,
new Fields("key"),
stream?2,
new Fields("x"),
new Fields("key", "a", "b", "c"));

144

72

Joins: Example

The example code joins stream1 and stream2
together using "key" and "x" as the join fields
for each respective stream

145

Joins: Example

Trident requires that all the output fields of the
new stream be named
The tuples emitted from the example join will
contain:

First, the list of join fields

In this case, "key" corresponds to "key" from streamz and "x"
from stream2
Next, a list of all non-join fields from all streams, in
order of how the streams were passed to the join
method

In this case, "a" and "b" correspond to "val1" and "val2" from
streamz, and "c" corresponds to "val1" from streama2.

146

24/05/2017

73

