
Version #1

Big Data: Architectures and Data Analytics

July 14, 2017

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I
Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the HDFS files logs.txt and logs2.txt. The size of logs.txt is

1036MB and the size of log2.txt is 500MB. Suppose that the replication factor is 4

and the block size is 512MB? How many HDFS blocks are totally used to store the

two files in HDFS?

 a) 3 blocks

 b) 4 blocks

 c) 12 blocks

 d) 16 blocks

 2. (2 points) Consider the HDFS folder “inputData” containing the following three files:

Filename Size Content of the file

Temperature1.txt 61 bytes 2016/01/01,00:00,0
2016/01/01,00:05,-1
2016/01/01,00:10,-1.2

Temperature2.txt 63 bytes 2016/01/01,00:15,-1.5
2016/01/01,00:20,0

2016/01/01,00:25,-0.5
Temperature3.txt 62 bytes 2016/01/01,00:30,-0.5

2016/01/01,00:35,1
2016/01/01,00:40,1.5

Suppose that you are using a Hadoop cluster that can potentially run up to 10

mappers in parallel and suppose that the HDFS block size is 512MB.

Suppose that the following MapReduce program is executed by providing the folder

“inputData” as input folder and the folder “results” as output folder.

Version #1

/* Driver */

package it.polito.bigdata.hadoop.exam;

import ….;

public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {
 Path inputPath;
 Path outputDir;
 int exitCode;

 inputPath = new Path(args[0]);
 outputDir = new Path(args[1]);

 Configuration conf = this.getConf();

 Job job = Job.getInstance(conf);
 job.setJobName("Exercise #1 - Exam 2017/06/30");

 FileInputFormat.addInputPath(job, inputPath);
 FileOutputFormat.setOutputPath(job, outputDir);

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 // Set mapper
 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(DoubleWritable.class);

 // Set reduce class
 job.setReducerClass(ReducerBigData.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(DoubleWritable.class);

 // Set number of reducers
 job.setNumReduceTasks(2);

 // Execute the job and wait for completion
 if (job.waitForCompletion(true) == true)
 exitCode = 0;
 else
 exitCode = 1;

 return exitCode;
 }

 public static void main(String args[]) throws Exception {
 // Exploit the ToolRunner class to "configure" and run the Hadoop
 // application
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);

 System.exit(res);
 }

}

Version #1

/* Mapper */

package it.polito.bigdata.hadoop.exam;

import java.io.IOException;

import ….;

/* Mapper */
class MapperBigData extends Mapper<LongWritable, Text, Text, DoubleWritable> {

 protected void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {
 String fields[] = value.toString().split(",");
 String date = fields[0];
 Double temperature = Double.parseDouble(fields[2]);

 // Emit (date, temperature)
 context.write(new Text(date), new DoubleWritable(temperature));
 }
}

/* Reducer */

package it.polito.bigdata.hadoop.exam;

import …..;

class ReducerBigData extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
 @Override
 protected void reduce(Text key, // Input key type
 Iterable<DoubleWritable> values, // Input value type
 Context context) throws IOException, InterruptedException {

 double maxTemp = Double.MIN_VALUE;

 // Iterate over the set of values and compute the maximum temperature
 for (DoubleWritable temperature : values) {
 if (temperature.get() > maxTemp) {
 maxTemp = temperature.get();
 }
 }

 // Emit (date, maximum temperature)
 context.write(key, new DoubleWritable(maxTemp));
 }
}

What is the content of the output folder generated by the execution of the

application reported above?

 a) The output folder contains three files

 One file that contains only the line “2016/01/01 0”

 One file that contains only the line “2016/01/01 0”

 One file that contains only the line “2016/01/01 1.5”

Version #1

 b) The output folder contains three files

 One file that contains only the line “2016/01/01 1.5”

 The other two files are empty

 c) The output folder contains two files

 One file that contains only the line “2016/01/01 1.5”

 The other file is empty

 d) The output folder contains two files

 One file that contains only the line “2016/01/01 0”

 One file that contains only the line “2016/01/01 1.5”

Part II

PoliWeather is an environmental company that monitors weather data for performing long-

term analyses. Specifically, PoliWeather is focused on temperature analyses and the

analyses of interest are based on the following data sets/files.

 Temperatures.txt

o Temperatures.txt is a text file containing the historical information about the

maximum and minimum daily temperatures on several European cities

around the world. It contains the data about the last 20 years.

o Each line of the input file has the following format

 date_reading,city,country,max_temperature,min_temperature

where city is a city name, country is the country of city, and

max_temperature and min_temperature are the observed maximum

and minimum temperatures in city at date date_reading.

 For example, the line

2016/07/20,Turin,Italy,32.5,26.0

means that the observed maximum temperature in Turin on July 20,

2016 was 32.5°C and the observed minimum temperature in Turin on

July 20, 2016 was 26.0°C

Version #1

Exercise 1 – MapReduce and Hadoop (9 points)

The managers of PoliWeather are interested in selecting the cities associated with at least
one day (date) characterized by a maximum temperature greater than 35°C and at least
one day (date) characterized by a minimum temperature less than -20°C. All the historical

data stored in Temperatures.txt must be considered.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code, to address the following point:

A. City with at least one high temperature value and at least one low temperature

value. Considering all the historical data stored in Temperatures.txt, the application

must select the cities with at least one day (date) characterized by a maximum
temperature greater than 35°C (i.e., max_temperature > 35°C) and at least one day

(date) characterized by a minimum temperature less than -20°C (i.e.,
min_temperature < -20°C). The two days (dates) may be the same date or different

dates. Store the results in a HDFS folder. The output contains one line for each of

the selected cities.

The name of the output folder is one argument of the application. The other argument is

the path of the input file Temperatures.txt.

Fill in the provided template for the Driver of this exercise. Use your papers for the other
parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (18 points)

The managers of PoliWeather are interested in performing some analyses about the

meteorological summer of year 2015. Specifically, for each city, you must compute the
average value of max_temperature by considering all the values of max_temperature

associated with the meteorological summer of year 2015 (i.e., the analysis is based on the

historical data stored in Temperatures.txt, considering only the dates from June 1, 2015 to
August 31, 2015).

PoliWeather is also interested in identifying the hot cities, for each country, during the
meteorological summer of year 2015. Specifically, given a city, that city is classified as a
“hot city” if the average value of max_temperature of that city is at least 5°C greater than

the average value of max_temperature of the country of that city (i.e., the average value of
max_temperature computed over all the max_temperature values of the country the city is

part of). This analysis, about hot cities, must be performed only for the meteorological

summer of year 2015 (i.e., the analysis is based on the historical data stored in
Temperatures.txt, considering only the dates from June 1, 2015 to August 31, 2015).

The managers of PoliWeather asked you to develop an application to address the
analyses they are interested in. The application has three arguments/parameters: the file
Temperatures.txt and two output folders (associated with the outputs of the following

points A and B, respectively).

Version #1

Specifically, design a single application, based on Spark and RDDs, and write the
corresponding Java code, to address the following points:

A. (8 points) Meteorological summer 2015 - City average maximum temperature. The

application selects from Temperatures.txt only the historical temperature values
observed from June 1, 2015 to August 31, 2015 and then computes, for each city, the
average value of max_temperature. The application stores in the first HDFS output
folder the information “(city-country, average max_temperature of city)” (note that each

output key contains the concatenation of the city and its country). The output file

contains one pair per line.

B. (10 points) Meteorological summer 2015 - Hot cities. Consider only the historical data

of the meteorological summer of year 2015 (i.e., the analysis is based on the historical
data stored in Temperatures.txt, considering only the dates from June 1, 2015 to
August 31, 2015). The application stores in the second HDFS output folder only the
“hot cities” of each country. Specifically, the hot cities are those with an average
max_temperature value that is at least 5°C greater than the average max_temperature

value of the country the city is part of.

Version #1

Big Data: Architectures and Data Analytics

July 14, 2017

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of reducers
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #1

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Set number of reducers of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

