
Version #1

Big Data: Architectures and Data Analytics

September 14, 2017

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I
Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the HDFS folder logsFolder, which contains two files: logs.txt

and logs2.txt. The size of logs.txt is 500MB and the size of logs2.txt is 524MB.

Suppose that you are using a Hadoop cluster that can potentially run up to 10

mappers in parallel and suppose to execute a MapReduce-based program that

selects the rows of the files in logsFolder containing the word “ERROR”. Which of

the following values is a proper HDFS block size if you want to “force” Hadoop to

run exactly 2 mappers in parallel when you execute the application by specifying

the folder logsFolder as input?

 a) Block size: 1024MB

 b) Block size: 512MB

 c) Block size: 256MB

 d) Block size: 128MB

 2. (2 points) Consider the HDFS folder “inputData” containing the following two files:

Filename Size Content of the files HDFS Blocks

Block ID Content of the block

Prices1.txt 18 bytes 21.45
52.55
43.55

B1 21.45
52.55

B2 43.55

Prices2.txt 18 bytes 60.33
60.33

60.33

B3 60.33
60.33

B4 60.33

Suppose that you are using a Hadoop cluster that can potentially run up to 20

mappers in parallel and suppose that the HDFS block size is 12 bytes.

Suppose that the following MapReduce program is executed by providing the folder

“inputData” as input folder and the folder “results” as output folder.

Version #1

/* Driver */

import … ;
public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);
 job.setJobName("2017/09/14 - Theory");

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(DoubleWritable.class);
 job.setMapOutputValueClass(NullWritable.class);

 job.setNumReduceTasks(0);

 if (job.waitForCompletion(true) == true)
 return 0;
 else
 return 1;
 }

 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }
}

/* Mapper */

import …;

class MapperBigData extends Mapper<LongWritable, Text, DoubleWritable, NullWritable> {
 Double firstPrice;

 protected void setup(Context context) {
 firstPrice = null;
 }

 protected void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {

 Double price = new Double(value.toString());

 if (firstPrice == null || price.doubleValue() > firstPrice) {
 firstPrice = price;
 }

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {
 // emit the content of firstPrice
 context.write(new DoubleWritable(firstPrice), NullWritable.get());
 }
}

Version #1

What is the output generated by the execution of the application reported above?

 a) The output folder contains two files

 One file that contains the following line

52.55

 One file that contains the following line

60.33

 b) The output folder contains four files

 One file that contains the following line

52.55

 One file that contains the following line

43.55

 One file that contains the following line

60.33

 A fourth file that contains the same content of the previous file, i.e., the

following line

60.33

 c) The output folder contains only one file

 One file that contains the following four lines

52.55

43.55

60.33

60.33

 d) The output folder contains only one file

 The output file contains the following line

60.33

Version #1

Part II

PoliFly is a big travel web site that allows booking flights. In order to identify critical airports

and routes, PoliFly computes a set of statistics about flights and their delays based on the

following input data sets/files.

 Flights.txt

o Flights.txt is a text file containing the historical information about the flights of

the airlines managed by PoliFly. The number of flights per day is more than

100,000 and Flights.txt contains the historical data about the last 10 years.

o Each line of the input file has the following format

 Flight_number,Airline,date,scheduled_departure_time,scheduled_arriv

al_time,departure_airport_id,arrival_airport_id,delay,cancelled,number

_of_seats,number_of_booked_seats

where Flight_number is the identifier of the flight, Airline is the airline

that operated the flight, date is the date of the flight,

scheduled_departure_time and scheduled_arrival_time are its

scheduled departure and arrival times, departure_airport_id and

arrival_airport_id are the identifiers of the departure and arrival

airports, delay is the delay in minutes of the flight with respect to the

scheduled_arrival_time, and cancelled is a flag that is ‘yes’ if the flight

has been cancelled and ‘no’ otherwise. number_of_seats is the total

amount of seats of the flight while number_of_booked_seats is the

number of booked seats.

 For example, the line

AI1103,Alitalia,2016/03/01,15:35,17:10,TRN,CDG,5,no,150,143

means that the flight AI1103, operated by Alitalia, from TRN to CDG

scheduled for March 1, 2016, scheduled departure time 15:35 -

scheduled arrival time 17:10, arrived at the CDG airport 5 minutes

late. The flight had 150 seats and only 143 were booked.

 Airports.txt

o Airports.txt is a text file containing the information about airports. Each line

contains the information about one airport.

o Each line of Airports.txt has the following format

 Airport_id,Airport_name,City,Country

where Airport_id is the identifier of the airport, Airport_name is its

name, and city and country are the city and the country where the

airport is located, respectively.

 For example, the line

TRN,Torino Caselle,Caselle Torinese,Italy

Version #1

means that TRN is the id of the Torino Caselle airport, which is

located in Caselle Torinese, Italy.

Exercise 1 – MapReduce and Hadoop (9 points)

The managers of PoliFly are interested in selecting the airports characterized by more
than 1% cancelled departing flights in the last year (i.e., from September 1, 2016 to August
31, 2017).

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. Airports with many cancelled flights. Considering only the subset of flights of the last

year, the application must select the ids of the airports with more than 1% cancelled

departing flights in the last year (i.e., from September 1, 2016 to August 31, 2017).
The percentage of cancelled departing flights for an airport is given by the ratio
between the number of cancelled flights departing from that airport and the total

number of flights departing from that airport. Store the result of the analysis in a
HDFS folder. The output file contains one line for each of the selected airports.
Each line of the output file has the following format

 departure_airport_id\tPercentage of cancelled flights

The name of the output folder is one argument of the application. The other argument is
the path of the input file Flights.txt. Note that Flights.txt contains the data of the last 10

years but the analysis is focused only on the flights of the last year (i.e., from September 1,
2016 to August 31, 2017).

Fill in the provided template for the Driver of this exercise. Use your papers for the other
parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (18 points)

The managers of PoliFly are interested in performing some analyses about the amount of
delayed flights for each airline and each arrival airport, by considering only the flights with
an arrival airport located in Germany. Specifically, they are interested in counting, for each

couple (airline, arrival airport), with arrival airport located in Germany, the number of flights
that arrived at least 15 minutes late and sorting the results based on the number of
delayed flights.

Another analysis of interest is related to the identification of the “overloaded routes”
between couples of airports. Each couple of airports (departure airport, arrival airport) is a

route and a route is an “overloaded route” if at least 99% of the flights of that route were
fully booked and at least 5% of the flights of that route were cancelled. A flight is fully
booked if all the seats are booked (i.e., number_of_booked_seats == number_of_seats).

Version #1

The managers of PoliFly asked you to develop an application to address all the analyses
they are interested in. The application has four arguments/parameters: the files Flights.txt
and Airports.txt and two output folders (associated with the outputs of the following points

A and B, respectively).

Specifically, design a single application, based on Spark and RDDs, and write the

corresponding Java code, to address the following points:

A. (9 points) Airlines with delayed flights landing in Germany. The application must select

only the flights with an arrival airport located in Germany and then computes, for each
couple (airline, arrival airport), the number of flights that arrived at least 15 minutes
late. The application stores in the first HDFS output folder the information “number of

delayed flights, airline, arrival airport name”. The results are stored in decreasing order
by considering the number of delayed flights. The output contains one couple “(airline,
arrival airport name)”, and the associated “number of delayed flights”, per line. Note

that the application stores the name of the arrival airport. You can suppose that the
arrival airport name is unique (i.e., no airports have the same name).

B. (9 points) Overloaded routes. The application must select the “overloaded routes”.

Every couple of airport ids “(departure_airport_id,arrival_airport_id)” associated with at
least one flight is a route1. A route is an “overloaded route” if at least 99% of the flights

of that route were fully booked, based on the historical data available in Flights.txt, and
at least 5% of the flights of that route were cancelled, based on the historical data
available in Flights.txt. A flight is fully booked if all the seats are booked (i.e.,
number_of_booked_seats == number_of_seats). The application stores in the second

HDFS output folder the information “(departure_airport_id,arrival_airport_id)” for the
selected routes. Note that the application stores couples of airport ids and not their

names. The output contains one line per selected route.

1
 Note that the “direction” is important. For instance, the couple of airport ids (TRN, CDG) is a route and the couple

(DCG, TRN) is a different route.

Version #1

Big Data: Architectures and Data Analytics

September 14, 2017

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of reducers
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #1

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Set number of reducers of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

