
15/03/2018

1

Counters

2

15/03/2018

2

 Hadoop provides a set of basic, built-in,
counters to store some statistics about jobs,
mappers, reducers

 E.g., number of input and output records

 E.g., number of transmitted bytes

 Ad-hoc, user-defined, counters can be
defined to compute global “statistics”
associated with the goal of the application

3

 User-defined counters

 Are defined by means of Java enum

▪ Each application can define an arbitrary number of
enums

 Are incremented in the Mappers and Reducers

 The global/final value of each counter is available
a the end of the job

▪ It is stored/printed by the Driver (at the end of the
execution of the job)

4

15/03/2018

3

 The name of the enum is the group name

 Each enum as a number of “fields”

 The enum’s fields are the counter name
 In mappers and/or reduces counters are

incremented by using the increment()
method

 context.getCounter(countername).increment(val
ue);

 5

 The getCounters() and findCounter()
methods are used by the Driver to retrieve
the final values of the counters

6

15/03/2018

4

 User-defined counters can be also defined on
the fly

 By using the method incrCounter(“group name”,
“counter name”, value)

 Dynamic counters are useful when the set of
counters is unknown at design time

7

 In the driver
public static enum COUNTERS {
 ERROR_COUNT,
 MISSING_FIELDS_RECORD_COUNT
}

 This enum defines two counters

 COUNTERS.ERROR_COUNT

 COUNTERS.MISSING_FIELDS_RECORD_COUNT

 8

15/03/2018

5

 This example increments the
COUNTERS.ERROR_COUNT counter

 In the mapper or the reducer

context.getCounter(COUNTERS.ERROR_COUNT).i
ncrement(1);

9

 This example retrieves the final value of the
COUNTERS.ERROR_COUNT counter

 In the driver

Counter errorCounter =
job.getCounters().findCounter(COUNTERS.ERROR
_COUNT);

10

15/03/2018

6

Map-only job

11

 In some applications all the work can be
performed by the mapper(s)
 E.g., record filtering applications

 Hadoop allows executing Map-only jobs
 The reduce phase is avoided

 Also the shuffle and sort phase is not executed

 The output of the map job is directly stored in
HDFS
▪ i.e., the set of pairs emitted by the map phase is already

the final output

12

15/03/2018

7

 Implementation of a Map-only job

 Implement the map method

 Set the number of reducers to 0 during the
configuration of the job (in the driver)

▪ job.setNumReduceTasks(0);

13

In-Mapper combiner

14

15/03/2018

8

 Mapper classes are characterized also by a setup
and a cleanup method
 They are empty if they are not override

 The setup method is called once for each
mapper prior to the many calls to the map
method
 It can be used to set the values of in-mapper variables

 In-mapper variables are used to maintain in-mapper
statistics and preserve the state (locally for each
mapper) within and across calls to the map method

15

 The map method, invoked many times,
updates the value of the in-mapper variables

 Each mapper (each instance of the mapper class)
has its how copy of the in-mapper variables

 The cleanup method is called once for each
mapper after the many calls to the map
method

 It can be used to emit (key,value) pairs based on
the values of the in-mapper variables/statistics

16

15/03/2018

9

 In-Mapper Combiners, a possible
improvement over “standard” Combiners

 Initialize a set of in-mapper variables during the
instance of the Mapper

▪ Initialize them in the setup method of the mapper

 Update the in-mapper variables/statistics in the
map method

▪ Usually, no (key,value) pairs are emitted in the map
method of an in-mapper combiner

17

 After all the input records (input (key, value) pairs)
of a mapper have been analyzed by the map
method, emit the output (key, value) pairs of the
mapper

▪ (key, value) pairs are emitted in the cleanup method of
the mapper based on the values of the in-mapper
variables

18

15/03/2018

10

 The in-mapper variables are used to perform
the work of the combiner in the mapper

 It can allow improving the overall performance of
the application

 But pay attention to the amount of used main
memory

▪ Each mapper can use a limited amount of main-memory

▪ Hence, in-mapper variables should be “small” (at least
smaller than the maximum amount of memory assigned
to each mapper)

19

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

20

15/03/2018

11

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

21

Invoked one time
for each mapper

Invoked one time
for each mapper

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

22

Invoked one time
for each mapper

Invoked one time
for each mapper

Invoked multiple
times for each
mapper

