
15/03/2018

1

Counters

2

15/03/2018

2

 Hadoop provides a set of basic, built-in,
counters to store some statistics about jobs,
mappers, reducers

 E.g., number of input and output records

 E.g., number of transmitted bytes

 Ad-hoc, user-defined, counters can be
defined to compute global “statistics”
associated with the goal of the application

3

 User-defined counters

 Are defined by means of Java enum

▪ Each application can define an arbitrary number of
enums

 Are incremented in the Mappers and Reducers

 The global/final value of each counter is available
a the end of the job

▪ It is stored/printed by the Driver (at the end of the
execution of the job)

4

15/03/2018

3

 The name of the enum is the group name

 Each enum as a number of “fields”

 The enum’s fields are the counter name
 In mappers and/or reduces counters are

incremented by using the increment()
method

 context.getCounter(countername).increment(val
ue);

 5

 The getCounters() and findCounter()
methods are used by the Driver to retrieve
the final values of the counters

6

15/03/2018

4

 User-defined counters can be also defined on
the fly

 By using the method incrCounter(“group name”,
“counter name”, value)

 Dynamic counters are useful when the set of
counters is unknown at design time

7

 In the driver
public static enum COUNTERS {
 ERROR_COUNT,
 MISSING_FIELDS_RECORD_COUNT
}

 This enum defines two counters

 COUNTERS.ERROR_COUNT

 COUNTERS.MISSING_FIELDS_RECORD_COUNT

 8

15/03/2018

5

 This example increments the
COUNTERS.ERROR_COUNT counter

 In the mapper or the reducer

context.getCounter(COUNTERS.ERROR_COUNT).i
ncrement(1);

9

 This example retrieves the final value of the
COUNTERS.ERROR_COUNT counter

 In the driver

Counter errorCounter =
job.getCounters().findCounter(COUNTERS.ERROR
_COUNT);

10

15/03/2018

6

Map-only job

11

 In some applications all the work can be
performed by the mapper(s)
 E.g., record filtering applications

 Hadoop allows executing Map-only jobs
 The reduce phase is avoided

 Also the shuffle and sort phase is not executed

 The output of the map job is directly stored in
HDFS
▪ i.e., the set of pairs emitted by the map phase is already

the final output

12

15/03/2018

7

 Implementation of a Map-only job

 Implement the map method

 Set the number of reducers to 0 during the
configuration of the job (in the driver)

▪ job.setNumReduceTasks(0);

13

In-Mapper combiner

14

15/03/2018

8

 Mapper classes are characterized also by a setup
and a cleanup method
 They are empty if they are not override

 The setup method is called once for each
mapper prior to the many calls to the map
method
 It can be used to set the values of in-mapper variables

 In-mapper variables are used to maintain in-mapper
statistics and preserve the state (locally for each
mapper) within and across calls to the map method

15

 The map method, invoked many times,
updates the value of the in-mapper variables

 Each mapper (each instance of the mapper class)
has its how copy of the in-mapper variables

 The cleanup method is called once for each
mapper after the many calls to the map
method

 It can be used to emit (key,value) pairs based on
the values of the in-mapper variables/statistics

16

15/03/2018

9

 In-Mapper Combiners, a possible
improvement over “standard” Combiners

 Initialize a set of in-mapper variables during the
instance of the Mapper

▪ Initialize them in the setup method of the mapper

 Update the in-mapper variables/statistics in the
map method

▪ Usually, no (key,value) pairs are emitted in the map
method of an in-mapper combiner

17

 After all the input records (input (key, value) pairs)
of a mapper have been analyzed by the map
method, emit the output (key, value) pairs of the
mapper

▪ (key, value) pairs are emitted in the cleanup method of
the mapper based on the values of the in-mapper
variables

18

15/03/2018

10

 The in-mapper variables are used to perform
the work of the combiner in the mapper

 It can allow improving the overall performance of
the application

 But pay attention to the amount of used main
memory

▪ Each mapper can use a limited amount of main-memory

▪ Hence, in-mapper variables should be “small” (at least
smaller than the maximum amount of memory assigned
to each mapper)

19

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

20

15/03/2018

11

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

21

Invoked one time
for each mapper

Invoked one time
for each mapper

class MAPPER
 method setup
 A ← new AssociativeArray

 method map(offset key, line l)
 for all word w ∈ line l do
 A{w} ← A{w} + 1

 method cleanup
 for all word w ∈ A do
 EMIT(term w , count A{w})

22

Invoked one time
for each mapper

Invoked one time
for each mapper

Invoked multiple
times for each
mapper

