
25/05/2018

1

25/05/2018

2

 Spark Streaming is a framework for large
scale stream processing

 Scales to 100s of nodes

 Can achieve second scale latencies

 Provides a simple batch-like API for
implementing complex algorithm

 Can absorb live data streams from Kafka, Flume,
ZeroMQ, Twitter, …

25/05/2018

3

 Many important applications must process
large streams of live data and provide results
in near-real-time

 Social network trends

 Website statistics

 Intrusion detection systems

 …

 Scalable to large clusters
 Second-scale latencies
 Simple programming model
 Efficient fault-tolerance in stateful

computations

25/05/2018

4

 Storm
 Replays record if not processed by a node

 Processes each record at least once

 May update mutable state twice

 Mutable state can be lost due to failure
 Storm Trident
 Uses transactions to update state

 Processes each record exactly once

 Per state transaction updates slow

7

8

25/05/2018

5

 Spark streaming runs a streaming
computation as a series of very small,
deterministic batch jobs

 It splits each input stream in “portions” and
processes one portion at a time (in the
incoming order)

 The same computation is applied on each portion
of the stream

 Each portion is called batch

9

 Spark streaming

 Splits the live stream into batches of X seconds

 Treats each batch of data as RDDs and processes
them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

10

25/05/2018

6

 Problem specification

 Input: a stream of sentences

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch

▪ i.e., execute the word count problem for each batch of
10 seconds

11

12

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

25/05/2018

7

13

Test Spark streaming
0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

14

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

25/05/2018

8

15

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

16

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

0

10

20

30

Time (s)

Input stream

25/05/2018

9

17

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

18

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

Input stream

25/05/2018

10

19

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

(test,1), (spark,2), (streaming,2),
(second,1), (sentence,1)

Stdout

(second, 1), (spark,1), (batch,2),
(of,1), (size,1), (10,2), (seconds,2)

0

10

20

30

Time (s)

(third,1), (batch, 1)

Input stream

 DStream

 Sequence of RDDs representing a discretized
version of the input stream of data

▪ Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP
sockets, ..

 One RDD for each batch of the input stream

 PairDStream

 Sequence of PairRDDs representing a stream of
pairs

25/05/2018

11

 Transformations

 Modify data from one DStream to another

 Standard RDD operations

▪ map, countByValue, reduce, join, …

 Window and Stateful operations

▪ window, countByValueAndWindow, …

 Output Operations (actions)

 Send data to external entity

▪ saveAsHadoopFiles, saveAsTextFile, ...

 DStreams remember the sequence of
operations that created them from the
original fault-tolerant input data

 Batches of input data are replicated in
memory of multiple worker nodes, therefore
fault-tolerant

 Data lost due to worker failure, can be
recomputed from input data

25/05/2018

12

 Define a Spark Streaming Context object

 Define the size of the batches (in seconds)
associated with the Streaming context

 Specify the input stream and define a
DStream based on it

 Specify the operations to execute for each
batch of data

 Use transformations and actions similar to the
ones available for “standard” RDDs

 Invoke the start method

 To start processing the input stream

 Wait until the application is killed or the
timeout specified in the application expires

 If the timeout is not set and the application is not
killed the application will run forever

25/05/2018

13

 The Spark Streaming Context is defined by using
the JavaStreamingContext(SparkConf sparkC,
Duration batchDuration) constructor of
JavaStreamingContext

 The batchDuration parameter specifies the “size”
of the batches

 Example
JavaStreamingContext jssc =

new JavaStreamingContext(conf,Durations.seconds(10));

 The input streams associated with this context will be split
in batches of 10 seconds

 The input Streams can be generate from
different sources

 TCP socket, Kafka, Flume, Kinesis, Twitter

 Also an HDFS folder can be used as “input stream”

▪ This option is usually used during the application
development to perform a set of initial tests

26

25/05/2018

14

 A DStream can be associated with the content
emitted by a TCP socket

 socketTextStream(String hostname, int port_number)

is used to create a DStream based on the textual
content emitted by a TPC socket

 Example

JavaReceiverInputDStream<String> lines =
jssc.socketTextStream("localhost", 9999);

 “Store” the content emitted by localhost:9999 in the
lines DStream

27

 A DStream can be associated with the content
of an input (HDFS) folder

 Every time a new file is inserted in the folder, the
content of the file is “stored” in the associated
DStream and processed

 Pay attention that updating the content of a file does
not trigger/change the content of the DStream

 textFileStream(String folder) is used to create a
DStream based on the content of the input
folder

28

25/05/2018

15

 Example

JavaDStream<String> lines =
jssc.textFileStream(inputFolder);

 “Store” the content of the files inserted in the
input folder in the lines Dstream

 Every time new files are inserted in the folder their
content is “stored” in the current “batch” of the
stream

29

 Usually DStream objects are defined on top
of streams emitted by specific applications
that emit real-time streaming data
 E.g., Apache Kafka, Apache Flume, Kinesis,

Twitter
 You can also write your own applications for

generating streams of data
 However, Kafka, Flume and similar tools are

usually a more reliable and effective solutions for
generating streaming data

30

25/05/2018

16

 Analogously to standard RDDs, also DStream
are characterized by a set of transformations
 When applied to DStream objects, transformations

return a new DStream Object
 The transformation is applied on one batch (RDD) of

the input DStream at a time and returns a batch
(RDD) of the new DStream
▪ i.e., each batch (RDD) of the input DStream is associated with

exactly one batch (RDD) of the returned DStream
 Many of the available transformations are the

same transformations available for standard
RDDs

31

 map(func)
 Returns a new DStream by passing each element

of the source DStream through a function func
 flatMap(func)
 Each input item can be mapped to 0 or more

output items. Returns a new DStream
 filter(func)
 Returns a new DStream by selecting only the

records of the source DStream on which func
returns true

32

25/05/2018

17

 reduce(func)
 Returns a new DStream of single-element RDDs by

aggregating the elements in each RDD of the source
DStream using a function func. The function should be
associative so that it can be computed in parallel

 reduceByKey(func)
 When called on a PairDStream of (K, V) pairs, returns a

new PairDStream of (K, V) pairs where the values for each
key are aggregated using the given reduce function

 countByValue()
 When called on a DStream of elements of type K, returns a

new PairDStream of (K, Long) pairs where the value of
each key is its frequency in each batch of the source
DStream

33

 count()
 Returns a new DStream of single-element RDDs by

counting the number of elements in each batch (RDD)
of the source Dstream
▪ i.e., it counts the number of elements in each input batch

(RDD)
 union(otherStream)
 Returns a new DStream that contains the union of the

elements in the source DStream and otherDStream.
 join(otherStream)
 When called on two PairDStreams of (K, V) and (K, W)

pairs, return a new PairDStream of (K, (V, W)) pairs
with all pairs of elements for each key.

34

25/05/2018

18

 cogroup(otherStream)

 When called on a PairDStream of (K, V) and (K, W)
pairs, return a new DStream of (K, Seq[V],
Seq[W]) tuples

35

 transform(func)
 It is a specific transformation of DStreams

 It returns a new DStream by applying an RDD-to-RDD
function to every RDD of the source Dstream
▪ This can be used to do arbitrary RDD operations on the

DStream

 For example, the functionality of joining every
batch in a data stream with another dataset (a
standard RDD) is not directly exposed in the
DStream API
 However, you can use transform to do that

36

25/05/2018

19

 transformToPair(func)

 It is a specific transformation of PairDStreams

 It returns a new PairDStream by applying a
PairRDD-to-PairDD function to every PairRDD of
the source PairDStream

 It must be used instead of transform when
working with PairDStreams/PairRDDs

37

 print()

 Prints the first 10 elements of every batch of data
in a DStream on the driver node running the
streaming application

▪ Useful for development and debugging

38

25/05/2018

20

 saveAsTextFiles(prefix, [suffix])
 Saves the content of the DStream on which it is invoked as

text files
▪ One folder for each batch

▪ The folder name at each batch interval is generated based on
prefix, time of the batch (and suffix):
"prefix-TIME_IN_MS[.suffix]“

 It is not directly available for JavaDStream objects
▪ A Scala DStream object must be created from a JavaDStream by

invoking the dstream() method.

▪ saveAsTextFiles can be invoked on the returned Scala Dstream

 Example
▪ Counts.dstream().saveAsTextFiles(outputPathPrefix, "");

39

 The start() method of the
JavaSparkStreamingContext class is used to
start the application on the input stream(s)

 The awaitTerminationOrTimeout(long
millisecons) method is used to specify how
long the application will run

 The awaitTerminationOrTimeout() method
is used to run the application forever

 Until the application is explicitly killed

 40

25/05/2018

21

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch
▪ i.e., execute the word count problem for each batch of

10 seconds

 Store the results also in an HDFS folder

41

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {

 public static void main(String[] args) {

 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf=new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

42

25/05/2018

22

 // Create a (Receiver) DStream that will connect to localhost:9999

 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words = lines
 .flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word ->
 new Tuple2<String, Integer>(word.toLowerCase(), 1));

 JavaPairDStream<String, Integer> wordsCounts =

 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

43

 wordsCounts.print();

 wordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();

 }
}

44

25/05/2018

23

 Spark Streaming also provides windowed
computations

 It allows you to apply transformations over a
sliding window of data

▪ Each window contains a set of batches of the input
stream

▪ Windows can be overlapped
▪ i.e., the same batch can be included in many consecutive

windows

45

 Graphical example

 Every time the window slides over a source
DStream, the source RDDs that fall within the
window are combined and operated upon to
produce the RDDs of the windowed DStream

46

25/05/2018

24

 In the graphical example, the operation

 is applied over the last 3 time units of data (i.e.,
the last 3 batches of the input DStream)

▪ Each window contains the data of 3 batches

 slides by 2 time units

47

 Any window operation needs to specify two
parameters:

 Window length

▪ The duration of the window (3 in the example)

 Sliding interval

▪ The interval at which the window operation is
performed (2 in the example)

 These two parameters must be multiples of
the batch interval of the source DStream

48

25/05/2018

25

 Problem specification
 Input: a stream of sentences

 Split the input stream in batches of 10 seconds

 Define widows with the following characteristics
▪ Window length: 20 seconds (i.e., 2 batches)

▪ Sliding interval: 10 seconds (i.e., 1 batch)

 Print on the standard output, for each window,
the occurrences of each word appearing in the
window
▪ i.e., execute the word count problem for each window

49

50

Test Spark streaming
Second sentence Spark streaming

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

25/05/2018

26

51

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

Stdout

0

10

20

30

Time (s)

Input stream

52

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

0

10

20

30

Time (s)

(test,1), (spark,3), (streaming,2),
(second,2), (sentence,1),
(batch,2), (of,1), (size,1), (10,2),
(seconds,2)

Stdout

0

10

20

30

Time (s)

Input stream

25/05/2018

27

53

Test Spark streaming
Second sentence Spark streaming

Second Spark batch of 10 seconds
Batch size 10 seconds

Third batch

0

10

20

30

Time (s)

Stdout

(second, 1), (spark,1), (batch,3),
(of,1), (size,1), (10,2),
(seconds,2), (third,1)

0

10

20

30

Time (s)

Input stream

 window(windowLength, slideInterval)
 Returns a new DStream which is computed based

on windowed batches of the source DStream.
 countByWindow(windowLength,

slideInterval)
 Returns a new single-element stream containing

the number of elements of each window
▪ The returned object is a JavaDStream<Long>. However,

it contains only one value for each window (the number
of elements of the last analyzed window)

54

25/05/2018

28

 reduceByWindow(func, windowLength,
slideInterval)
 Returns a new single-element stream, created by

aggregating elements in the stream over a sliding
interval using func. The function should be associative
so that it can be computed correctly in parallel

 countByValueAndWindow(windowLength,
slideInterval)
 When it is called on a PairDStream of (K, V) pairs,

returns a new PairDStream of (K, Long) pairs where
the value of each key is its frequency within a sliding
window

55

 reduceByKeyAndWindow(func,
windowLength, slideInterval)

 When called on a PairDStream of (K, V) pairs,
returns a new PairDStream of (K, V) pairs where
the values for each key are aggregated using the
given reduce function over batches in a sliding
window

▪ The window length and the sliding window step are
specified as parameters of this invokation

56

25/05/2018

29

 A streaming application must operate 24/7 and hence
must be resilient to failures unrelated to the
application logic (e.g., system failures, JVM crashes,
etc.)

 For this to be possible, Spark Streaming needs to
checkpoint enough information to a fault- tolerant
storage system such that it can recover from failures

 This result is achieved by means of checkpoints
 Operations that store the data and metadata needed to

restart the computation if failures happen
 Checkpointing is necessary even for some window

transformations and stateful transformations

57

 Checkpointing is enabled by using the
checkpoint(String folder) method of
JavaSparkStreamingContext

 The parameter is the folder that is used to store
temporary data

58

25/05/2018

30

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds

 Define widows with the following characteristics
▪ Window length: 30 seconds (i.e., 3 batches)

▪ Sliding interval: 10 seconds (i.e., 1 batch)

 Print on the standard output, for each window, the
occurrences of each word appearing in the window
▪ i.e., execute the word count problem for each window

 Store the results also in an HDFS folder

59

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {
 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

 // Set the checkpoint folder (it is needed by some window transformations)
 jssc.checkpoint("checkpointfolder");

60

25/05/2018

31

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" trasformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 // Count the occurrence of each word in the current window
 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

61

 // reduceByKeyAndWindow is used instead of reduceByKey
 // The characteristics of the window is also specified
 JavaPairDStream<String, Integer> wordsCounts = wordsOnes
 .reduceByKeyAndWindow((i1, i2) -> i1 + i2,
 Durations.seconds(30),
 Durations.seconds(10));

 // Print the num. of occurrences of each word of the current window
 // (only 10 of them)
 wordsCounts.print();

 // Store the output of the computation in the folders with prefix
 // outputPathPrefix
 wordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

62

25/05/2018

32

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();
 }
}

63

 The updateStateByKey transformation
allows maintaining a state

 The value of the state is continuously updated
every time a new batch is analyzed

64

25/05/2018

33

 The use of updateStateByKey is based on two
steps

 Define the state

▪ The data type of the state can be an arbitrary data type

 Define the state update function

▪ Specify with a function how to update the state using
the previous state and the new values from an input
stream

65

 In every batch, Spark will apply the state
update function for all existing keys

 For each each key, the update function is
used to update the value associated with a
key by combining the former value and the
new values associated with that key
 For each key, the call method of the “function” is

invoked on the list of new values and the former
state value and returns the new aggregated value
for the considered key

66

25/05/2018

34

 By using the UpdateStateByKey, the
application can continuously update the
number of occurrences of each word

 The number of occurrences stored in the
PairDStream returned by this transformation is
computed over the union of all the batches (for
the first one to current one)

▪ For efficiency reasons, the new value is computed by
combining the last value with the values of the current
batch

67

 Problem specification
 Input: a stream of sentences retrieved from

localhost:9999

 Split the input stream in batches of 10 seconds

 Print on the standard output, every 10 seconds,
the occurrences of each word appearing in the
stream (from time 0 to the current time)
▪ i.e., execute the word count problem from the

beginning of the stream to current time

 Store the results also in an HDFS folder

68

25/05/2018

35

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {
 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

 // Set the checkpoint folder (it is needed by some window transformations)
 jssc.checkpoint("checkpointfolder");

69

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words =
 lines.flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

70

25/05/2018

36

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

71

 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

72

It is invoked one time for each key

25/05/2018

37

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

73

List of new integer values for the current key

 // DStream made of get cumulative counts that get updated in every batch
 JavaPairDStream<String, Integer> totalWordsCounts =
 wordsCounts.updateStateByKey((newValues, state) -> {
 // state.or(0) returns the value of State
 // or the default value 0 if state is not defined
 Integer newSum = state.or(0);

 // Iterates over the new values and sum them to the previous state

 for (Integer value : newValues) {
 newSum += value;
 }
 return Optional.of(newSum);
 });

74

Current “state” of the current key,
i.e., number of occurrences in the previous part of the stream

25/05/2018

38

 totalWordsCounts.print();

 totalWordsCounts.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();

 }
}

75

 Problem specification

 Input: a stream of sentences retrieved from
localhost:9999

 Split the input stream in batches of 10 seconds
each and print on the standard output, for each
batch, the occurrences of each word appearing in
the batch

▪ The pairs must be returned/displayed sorted by key

 Store the results also in an HDFS folder

76

25/05/2018

39

package it.polito.bigdata.spark.StreamingWordCount;
import …..

public class SparkDriver {

 public static void main(String[] args) {
 String outputPathPrefix=args[0];

 // Create a configuration object and set the name of the application
 SparkConf conf = new SparkConf()
 .setAppName("Spark Streaming word count");

 // Create a Spark Streaming Context object
 JavaStreamingContext jssc =
 new JavaStreamingContext(conf, Durations.seconds(10));

77

 // Create a (Receiver) DStream that will connect to localhost:9999
 JavaReceiverInputDStream<String> lines =
 jssc.socketTextStream("localhost", 9999);

 // Apply the "standard" transformations to perform the word count task
 // However, the "returned" RDDs are DStream/PairDStream RDDs
 JavaDStream<String> words = lines
 .flatMap(line -> Arrays.asList(line.split("\\s+")).iterator());

 JavaPairDStream<String, Integer> wordsOnes = words
 .mapToPair(word -> new Tuple2<String, Integer>(word.toLowerCase(), 1));

 JavaPairDStream<String, Integer> wordsCounts =
 wordsOnes.reduceByKey((i1, i2) -> i1 + i2);

78

25/05/2018

40

 // Sort the content/the pairs by key
 JavaPairDStream<String, Integer> wordsCountsSortByKey = wordsCounts
 .transformToPair((JavaPairRDD<String, Integer> rdd) -> rdd.sortByKey());

 wordsCountsSortByKey.print();

 wordsCountsSortByKey.dstream().saveAsTextFiles(outputPathPrefix, "");

 // Start the computation
 jssc.start();

 jssc.awaitTerminationOrTimeout(120000);

 jssc.close();
 }
}

79

