
Version #2

Big Data: Architectures and Data Analytics

June 26, 2018

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I
Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the HDFS folder logsFolder, which contains three files: log.txt ,

errors.txt, and warning.txt. The size of log.txt is 512MB, the size of errors.txt is

518MB, while the size of warning.txt is 250MB. Suppose that you are using a

Hadoop cluster that can potentially run up to 9 mappers in parallel and suppose to

execute a Map-only MapReduce-based program that selects only the lines of the

input files in logsFolder containing the words “ERROR” or “WARNING”. The HDFS

block size is 256MB. How many mappers are instantiated by Hadoop when you

execute the application by specifying the folder logsFolder as input?

 a) 9

 b) 6

 c) 5

 d) 3

 2. (2 points) Consider the HDFS folder “inputData” containing the following two files:

Filename Size Content of the files HDFS Blocks

Block ID Content of the block
Wind1.txt 18 bytes 11.00

19.00
40.00

B1 11.00

19.00

B2 40.00

Wind2.txt 18 bytes 40.00
70.00
90.00

B3 40.00
70.00

B4 90.00

Suppose that you are using a Hadoop cluster that can potentially run up to 10

mappers in parallel and suppose that the HDFS block size is 12 bytes.

Version #2

Suppose that the following MapReduce program is executed by providing the folder

“inputData” as input folder and the folder “results” as output folder.

/* Driver */

import … ;
public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);
 job.setJobName("2018/06/26 - Theory");

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(DoubleWritable.class);
 job.setMapOutputValueClass(NullWritable.class);

 job.setNumReduceTasks(0);

 if (job.waitForCompletion(true) == true)
 return 0;
 else
 return 1;
 }

 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }
}

/* Mapper */

import …;

class MapperBigData extends Mapper<LongWritable, Text, DoubleWritable, NullWritable> {
 double sumWind;

 protected void setup(Context context) {
 sumWind = 0;
 }

protected void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {

 double wind = Double.parseDouble(value.toString());
 sumWind = sumWind + wind;
 }

 protected void cleanup(Context context) throws IOException, InterruptedException {
 // emit the content of sumWind if it is greater than 45
 if (sumWind>45)
 context.write(new DoubleWritable(sumWind), NullWritable.get());
 }
}

Version #2

What is the output generated by the execution of the application reported above?

 a) The output folder contains four part files

 One file that contains the following lines

110

90

 Three empty files

 b) The output folder contains four part files

 One file that contains the following line

30

 One file that contains the following line

40

 One file that contains the following line

110

 One file that contains the following line

90

 c) The output folder contains four part files

 One file that contains the following line

110

 One file that contains the following line

90

 Two empty files

 d) The output folder contains four part files

 One file that contains the following line

240

 Three empty files

Version #2

Part II

PoliClimate is an Intergovernmental Agency focused on climate change. They have

millions of sensors located around the world for monitoring precipitations and wind speed.

To identify critical behaviors, PoliClimate computes a set of statistics about the climate

conditions based on the following input file.

 ClimateData.txt

o ClimateData.txt is a text file containing the historical information about

precipitations and wind speed gathered by the sensors of PoliClimate. For

each sensor, a new line is inserted in ClimateData.txt every 10 minutes. The

number of managed sensors is more than 100,000 and ClimateData.txt

contains the historical data about the last 5 years (i.e., ClimateData.txt

contains more than 52 billion lines).

o Each line of ClimateData.txt has the following format

 SID,Timestamp,Precipitation_mm,WindSpeed

where SID is the sensor identifier, Timestamp is the timestamp at

which precipitation and wind speed are collected, Precipitation_mm is

the measured precipitation (in mm) and WindSpeed is the measured

wind speed (in km/h).

 For example, the following line

Sens2,2018/03/01,15:40,0.10,8.5

means that sensor Sens2, at 15:40 of March 1, 2018, measured a

precipitation equal to 0.10 mm and a wind speed equal to 8.5 km/h.

Exercise 1 – MapReduce and Hadoop (8 points)

The managers of PoliClimate are interested in selecting the sensors that were frequently
associated with low wind speed in the morning (i.e., from 8:00 to 11:59) in April 2018.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. Low wind speed in the morning of April 2018. Considering only the measurements

(i.e., lines of ClimateData.txt) associated with the time slot from 8:00 to 11:59 of
April 2018, the application must select the identifiers (SID) of the sensors that were

associated at least 1000 times with a WindSpeed value less than 1.0 km/h. Store
the result of the analysis in a HDFS folder. The output file contains one line for each
of the selected sensors. Specifically, each line of the output file contains the SID of

one of the selected sensors.

The name of the output folder is one argument of the application. The other argument is
the path of the input file ClimateData.txt. Note that ClimateData.txt contains the

Version #2

measurements collected in the last 5 years but the analysis is focused only on April 2018
and the time slot from 8:00 to 11:59.

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for
the other parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliClimate are interested in performing some analyses about the
average value of precipitations and wind speed for each sensor during the last two months

(from April 2018 to May 2018) to identify critical hours.

The managers of PoliClimate are also interested in identifying sensors measuring an

unbalanced daily wind speed during the last two months (from April 2018 to May 2018).
Specifically, given a date and a sensor, the sensor measured an “unbalanced daily wind
speed” during that date if that sensor, in that specific date, is characterized by at least 5

hours for which the minimum value of WindSpeed is less than 1 km/h and at least 5 hours
for which the minimum value of WindSpeed is greater than 40 km/h.

The managers of PoliClimate asked you to develop one single application to address all
the analyses they are interested in. The application has five arguments: precipitation
threshold (PrecThr), wind speed threshold (WindThr), the input file ClimateData.txt, and

two output folders (associated with the outputs of the following points A and B,
respectively).

Specifically, design a single application, based on Spark, and write the corresponding Java
code, to address the following points:

A. (8 points) Critical (SID, hour) pairs in April - May 2018. Considering only the

measurements collected in the last two months (from April 2018 to May 2018), the
application must select only the pairs (SID, hour) for which the average of
Precipitation_mm for that pair is less than the specified threshold PrecThr and the
average of WindSpeed for that pair is less than the specified threshold WindThr
(PrecThr and WindThr are two arguments of the application). The application stores in

the first HDFS output folder the information “SID-hour” for the selected pairs (SID,

hour), one pair per line.

B. (11 points) Pairs (SID,date) characterized by a daily unbalanced wind speed during the

last two months. Considering only the measurements collected in the last two months

(from April 2018 to May 2018), the application must select the pairs (SID, date) that are
characterized by an unbalanced daily wind speed. Specifically, given a date and a
sensor, the sensor measured an “unbalanced daily wind speed” during that date if that

sensor, in that specific date, is characterized by at least 5 hours for which the minimum
value of WindSpeed is less than 1 km/h and at least 5 hours for which the minimum

value of WindSpeed is greater than 40 km/h. The application stores in the second
HDFS output folder the information “SID-date” for the selected pairs (SID, date), one
pair per line.

Version #2

Big Data: Architectures and Data Analytics

June 26, 2018

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of reducers
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #2

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Set number of reducers of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

