
Version #2

Big Data: Architectures and Data Analytics

July 16, 2018

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following driver of a Spark application.

package …

import ….

public class SparkDriver {

 public static void main(String[] args) {

 SparkConf conf=new SparkConf().setAppName("Exam");

 JavaSparkContext sc = new JavaSparkContext(conf);

 /* Analyze errors */

 JavaRDD<String> errorsRDD = sc.textFile("errors.txt");

 Long numErrors = errorsRDD.count();

 System.out.println(numErrors);

 /* Analyze warnings */

 JavaRDD<String> warningsRDD = sc.textFile("warnings.txt");

 JavaRDD<String> selWarningsRDD = warningsRDD.filter(w -> w.startsWith("warning 1"));

 Long numWarnings = warningsRDD.count();

 Long numSelectedWarnings = selWarningsRDD.count();

 System.out.println("Num. warnings: “+numWarnings);

 System.out.println("Num. selected warnings: “+numSelectedWarnings);

 sc.close();

 }

}

Version #2

Which one of the following statements is true?

 a) Caching errorsRDD can improve the efficiency of the application (in terms of

execution time)

 b) Caching warningsRDD can improve the efficiency of the application (in terms of

execution time)

 c) Caching selWarningsRDD can improve the efficiency of the application (in terms

of execution time)

 d) Caching the RDDs of this Spark application does not improve its efficiency (in

terms of execution time)

 2. (2 points) Consider an input HDFS folder inputFold containing the files log1.txt and

log2.txt. The size of log1.txt is 2048MB and the size of log2.txt is 512MB. Suppose

that you are using a Hadoop cluster that can potentially run up to 5 instances of the

mapper in parallel and suppose to execute the word count application, based on

MapReduce, by specifying inputFold as input folder. Which of the following values is

a proper HDFS block size if you want to “force” Hadoop to run 5 instances of the

mapper in parallel when you execute the word count application by specifying

inputFold as input folder?

 a) Block size: 2048MB

 b) Block size: 1536MB

 c) Block size: 1024MB

 d) Block size: 512MB

Part II
PoliCar is an international automobile company characterized by several production plants

around the world. In each production plant, robots are used to produce some components

of the PoliCar’s automobiles. PoliCar computes a set of statistics to identify critical robots.

Specifically, PoliCar stores the faults of its robots and the associated information in the

following input data sets/files.

Version #2

 Robots.txt

o Robots.txt is a text file containing the list of robots managed by PoliCar.

Robots.txt contains one line for each robot of PoliCar. The number of

managed robots is more than 10,000.

o Each line of Robots.txt has the following format

 RID,PlantID,MAC

where RID is the robot identifier, PlantID is the identifier of the

production plant in which the robot is installed, and MAC is its MAC

address.

 For example, the following line

R5,PID5,02:42:3e:aa:a4:d8

means that robot R5 is installed in the production plant PID5 and the

MAC address of R5 is 02:42:3e:aa:a4:d8.

 Faults.txt

o Faults.txt is a text file containing the historical information about the faults of

the robots. A new line is inserted in Faults.txt every time a fault of a robot

occurs. The number of managed robots is more than 10,000 and Faults.txt

contains the historical data about the faults of the last 15 years.

o Each line of Faults.txt has the following format

 RID,FaultTypeCode,FaultDuration,Date,Time

where RID is the identifier of the robot with a fault, Date is the date of

the fault, Time is the time of the fault, FaultTypeCode is the code of

the type of fault, and FaultDuration is the number of minutes for which

the robot was unavailable due to the fault.

 For example, the following line

R5,FCode122,20,2017/05/02,06:40:51

means that robot R5 has been affected by the fault type FCode122 at

06:40:51 (hour=06, minute=40, second=51) of May 2, 2017 and R5

was unavailable for 20 minutes due to that fault.

Exercise 1 – MapReduce and Hadoop (8 points)

The managers of PoliCar are interested in selecting the robots that were affected by a
FCode100 fault (FaultTypeCode equal to "FCode100") at least one time in January 2015

and at least one time in February 2015.

Version #2

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. RIDs of the robots with FCode100 Faults in January and February 2015.

Considering only the faults associated with fault type code "FCode100", the
application must select the identifiers (RIDs) of the robots that were affected in both

months by the FCode100 fault: at least one time by an FCode100 fault in January
2015 AND at least one time by an FCode100 fault in February 2015. Store the
result of the analysis in a HDFS folder. The output contains one RID per line.

The arguments of the Hadoop application are (i) the path of the input file Faults.txt and (ii)
the name of the output folder. Note that Faults.txt contains the faults of all types occurred

in the last 15 years, but the analysis we are interested in is limited to a specific fault type
and time period.

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for
the other parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliCar are interested in (A) performing some analyses about the
number of faults per production plant in the first 6 months of year 2015 (i.e., from January
2015 to June 2015) and (B) identifying faulting robots in the first 6 months of year 2015.

The managers of PoliCar asked you to develop one single application to address all the
analyses they are interested in. The application has the following arguments: the path of

the input file Robots.txt, the path of the input file Faults.txt, and two output folders
(associated with the outputs of the following points A and B, respectively).

Specifically, design a single application, based on Spark, and write the corresponding Java
code, to address the following points:

A. (8 points) Production plant faults in the first semester of year 2015. Considering only

the faults related to the first 6 months of year 2015 (from January 2015 to June 2015),
the application must select the production plants (PlantIDs) associated with at least 180
faults during the first 6 months of year 2015 and store in the first HDFS output folder

the information “PlantID,Number of faults in the first 6 months of year 2015” for the
selected production plants (one production plant per line).

B. (11 points) RIDs of “Faulting robots in the first semester of 2015”. Considering only the

faults related to the first 6 months of year 2015 (from January 2015 to June 2015), the
application must select the identifiers (RIDs) of the robots classified as “faulting robot in

the first semester of 2015”. A robot is classified as a “faulting robot in the first semester
of 2015” if (i) it was affected by at least 5 faults in each of the first 6 months of year
2015 and (ii) at least one fault of that robot in the first semester of year 2015 has a

FaultDuration greater than 120 minutes (i.e., the maximum value of FaultDuration for
that robot from January 2015 to June 2015 is greater than 120 minutes). The
application stores in the second HDFS output folder the information about the

identifiers (RIDs) of the selected robots (one RID per line).

Version #2

Big Data: Architectures and Data Analytics

July 16, 2018

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of instances of the reducer of the first job
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #2

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Job 2 - Number instances of the reducer of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

