
Version #1

Big Data: Architectures and Data Analytics

September 3, 2018

Student ID __

First Name __

Last Name __

Part I

Answer to the following questions. There is only one right answer for each question.

1. (2 points) Consider the HDFS folder “inputFolder” containing the following two files:

Filename Size Content of the file

HumidityA.txt 16 bytes 51.45
9.55

8.15
HumidityB.txt 18 bytes 40.53

12.98
52.99

Suppose that you are using a Hadoop cluster that can potentially run up to 4

mappers in parallel and suppose that the HDFS block size is 2048MB.

Suppose that the following MapReduce program is executed by providing the folder

“inputFolder” as input folder and the folder “results” as output folder.

/* Driver */

import … ;
public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);
 job.setJobName("2018/09/03 - Theory");

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

Version #1

 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(DoubleWritable.class);
 job.setMapOutputValueClass(NullWritable.class);

 job.setNumReduceTasks(0);

 if (job.waitForCompletion(true) == true)
 return 0;
 else
 return 1;
 }

 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }
}

/* Mapper */

import …;

class MapperBigData extends Mapper<LongWritable, Text, DoubleWritable, NullWritable> {
 Double top1;

 protected void setup(Context context) {
 top1 = null;
 }

 protected void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {

 Double val = new Double(value.toString());

 if (top1 == null || val.doubleValue() > top1) {
 top1 = val;
 }
 }

 protected void cleanup(Context context) throws IOException, InterruptedException {
 // emit the content of top1
 context.write(new DoubleWritable(top1), NullWritable.get());
 }
}

What is the output generated by the execution of the application reported above?

 a) One file containing 52.99

 b) Two files

 One containing the value 52.99

 One empty file

 c) Two files

Version #1

 One containing the value 51.45

 One containing the value 40.53

 d) Two files

 One containing the value 51.45

 One containing the value 52.99

 2. (2 points) Consider the HDFS files prices.txt and prices2.txt. The size of prices.txt is

2000MB and the size of prices2.txt is 1072MB. Suppose that you are using a

Hadoop cluster that can potentially run up to 20 mappers in parallel and suppose to

execute a map-only MapReduce-based program that receives as input the folder

containing prices.txt and prices2.txt and selects the rows of the two files containing

prices greater than 10.5. How many mappers are instantiated by Hadoop if the

HDFS block size is 1024MB?

 a) 2 mappers

 b) 3 mappers

 c) 4 mappers

 d) 20 mappers

Version #1

Part II

PoliStocks is an international company that collects and analyzes stock data. To identify

interesting stocks, PoliStocks computes a set of statistics based on the following dataset

file.

 Stocks_Prices.txt

o Stocks_Prices.txt is a text file containing the historical information about the

last 10 years of prices of thousands of stocks on several international

financial markets.

o The sampling rate is 1 minute (i.e., every minute the system collects the

prices of the stocks under analyses and a new line for each stock is

appended at the end of Stocks_Prices.txt)

o Each line of the input file has the following format

 stockId,date,hour:minute,price

where stockId is a stock identifier (e.g., GOOG) and price is a floating

point number whose value indicates the price of the stock stockId at

time date,hour:minute.

 For example, the line

GOOG,2015/05/21,15:05,45.32

means that the price of stock GOOG on May 21, 2015 at 15:05 was

45.32€

Exercise 1 – MapReduce and Hadoop (8 points)

The managers of PoliStocks are interested in selecting the highest price reached by the
GOOG stock (stockId=”GOOG”) during year 2017 and the first time stamp of year 2017 in
which that highest price has been reached.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. Highest GOOG price in year 2017 and associated time stamp. Considering only the

prices of the GOOG stock (stockId=”GOOG”) in year 2017, the application must select
the highest price reached by the GOOG stock during year 2017 and the first time

stamp (date+hour+minute) of year 2017 in which that price was reached. Store the
result of the analysis in a HDFS folder. The output contains one single line with the
selected highest price and the associated first time stamp in the form

price\tdate,hour:minute

The arguments of the Hadoop application are (i) the path of the input file Stocks_Prices.txt
and (ii) the name of the output folder. Note that Stocks_Prices.txt contains the prices

Version #1

associated with the last 10 years and all stocks but the analysis we are interested in is
limited to year 2017 and the GOOG stock only.

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for
the other parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliStocks are interested in (A) performing some analyses about the
daily variations of each stock during year 2017 and (B) identifying “stable trends in year
2017” for each stock.

The managers of PoliStocks asked you to develop one single application to address all
the analyses they are interested in. The application has the following arguments: the path

of the input file Stocks_Prices.txt and two output folders (associated with the outputs of the
following points A and B, respectively).

Specifically, design a single application, based on Spark, and write the corresponding Java
code, to address the following points:

A. Analyses of daily variations in year 2017. Considering only the prices in year 2017, the

application must compute for each stock the number of dates associated with a daily
price variation greater than 10 euro. Given a stock and a date, the daily price variation

of that stock in that date is given by the difference between the highest price and the
lowest price reached by that stock in that specific date (highest price–lowest price).
Store in the first HDFS output folder the set of
“stockId,number_of_dates_dailyVariation>10”, one line for each stockId, reporting only

the stocks associated with at least one date in year 2017 with a daily price variation
greater than 10 euro.

Sorting the results is not required.

B. Stable trends in year 2017 for each stock. Considering only the prices in year 2017, for

each stock, the application must select all the sequences of two consecutive dates
characterized by a “stable trend”. Given a stock and two consecutive dates, the trend of
that stock for those two dates is classified as a “stable trend” if and only if the absolute

difference between the daily price variations of the two dates is at most 0.1 euro (i.e.,
abs(daily price variation of the first date - daily price variation of the second date) <=
0.1). The application stores in the second HDFS output folder the full set of all stable

trends, one per line. Specifically, each line contains the following information about one
stable trend: stockId, first date of the stable trend. Each output line has the following
format:

stockId,first_date

For instance, suppose that stock GOOG has a daily variation equal to 2.03 in April 2,

2017 and a daily variation equal to 2.05 in April 3, 2017. It means that
“GOOG,2017/04/02,2017/04/03” is classified as a “stable trend” because abs(2.03-
2.05)<=0.1 and the following line is inserted in the output:

GOOG,2017/04/02

Version #1

Note that you can have many pairs of consecutive dates of stable trends for each
stock, hence having multiple lines in the output file for each stock.
Sorting the results is not required.

Suppose that someone has already implemented the following static method.

 public static String previousDate(String date) of the DateTool class.

o The parameter of this method is a string representing a date (in the format
yyyy/mm/dd). The returned value is a string representing the previous date.

o For example, the invocation

 String yesterday=DateTool.previousDate(“2016/06/20”);

stores “2016/06/19” in the variable yesterday.

Version #1

Big Data: Architectures and Data Analytics

July 16, 2018

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of instances of the reducer of the first job
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #1

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Job 2 - Number instances of the reducer of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

