
Version #2

Big Data: Architectures and Data Analytics

September 3, 2018

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the HDFS files prices.txt and prices2.txt. The size of prices.txt is

1000MB and the size of prices2.txt is 536MB. Suppose that you are using a Hadoop

cluster that can potentially run up to 10 mappers in parallel and suppose to execute

a map-only MapReduce-based program that receives as input the folder containing

prices.txt and prices2.txt and selects the rows of the two files containing prices less

than 5.4. How many mappers are instantiated by Hadoop if the HDFS block size is

512MB?

 a) 10 mappers

 b) 4 mappers

 c) 3 mappers

 d) 2 mappers

 2. (2 points) Consider the HDFS folder “inputFolder” containing the following two files:

Filename Size Content of the file

Temp1.txt 16 bytes 53.45
5.55
5.15

Temp2.txt 18 bytes 50.53
11.98

62.19

Version #2

Suppose that you are using a Hadoop cluster that can potentially run up to 5

mappers in parallel and suppose that the HDFS block size is 1024MB.

Suppose that the following MapReduce program is executed by providing the folder

“inputFolder” as input folder and the folder “results” as output folder.

/* Driver */

import … ;
public class DriverBigData extends Configured implements Tool {
 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = this.getConf();
 Job job = Job.getInstance(conf);
 job.setJobName("2018/09/03 - Theory");

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(MapperBigData.class);
 job.setMapOutputKeyClass(DoubleWritable.class);
 job.setMapOutputValueClass(NullWritable.class);

 job.setNumReduceTasks(0);

 if (job.waitForCompletion(true) == true)
 return 0;
 else
 return 1;
 }

 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }
}

/* Mapper */

import …;

class MapperBigData extends Mapper<LongWritable, Text, DoubleWritable, NullWritable> {
 Double top1;

 protected void setup(Context context) {
 top1 = null;
 }

 protected void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException {

 Double val = new Double(value.toString());

 if (top1 == null || val.doubleValue() > top1) {
 top1 = val;
 }

Version #2

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {
 // emit the content of top1
 context.write(new DoubleWritable(top1), NullWritable.get());
 }
}

What is the output generated by the execution of the application reported above?

 a) One file containing 62.19

 b) Two files

 One containing the value 62.19

 One empty file

 c) Two files

 One containing the value 53.45

 One containing the value 62.19

 d) Two files

 One containing the value 53.45

 One containing the value 50.53

Version #2

Part II

PoliTrades is an Italian company that collects and analyzes stock data. The managers of

PoliTrades are interested in computing a set of statistics based on the following dataset

file.

 Prices.txt

o Prices.txt is a text file containing the historical information about the last 15

years of prices of thousands of stocks on several international financial

markets.

o The sampling rate is 2 minutes (i.e., every 2 minutes the system gathers the

prices of the stocks under analyses and a new line for each stock is inserted

at the end of Prices.txt)

o Each line of the input file has the following format

 date,hour:minute,stockId,price

where stockId is a stock identifier (e.g., TSLA) and price is a floating

point number whose value indicates the price of the stock stockId at

time date,hour:minute.

 For example, the line

2014/04/01,10:02,TSLA,51.24

means that the price of stock TSLA on April 1, 2014 at 10:02 was

51.24€

Exercise 1 – MapReduce and Hadoop (8 points)

The managers of PoliTrades are interested in selecting only for the TSLA stock
(stockId=”TSLA”) the lowest price reached by that stock during year 2014 and the last time
stamp of year 2014 in which that lowest price has been reached.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. Lowest TSLA price in year 2014 and associated time stamp. Considering only the

prices of the TSLA stock (stockId=”TSLA”) in year 2014, the application must select the

lowest price reached by the TSLA stock during year 2014 and the last time stamp
(date+hour+minute) of year 2014 in which that price was reached. Store the result of
the analysis in a HDFS folder. The output contains one single line with the selected

lowest price and the associated last time stamp in the form

date,hour:minute\tprice

The arguments of the Hadoop application are (i) the path of the input file Prices.txt and (ii)
the name of the output folder. Note that Prices.txt contains the prices associated with the

Version #2

last 15 years and all stocks but the analysis we are interested in is limited to year 2014
and the TSLA stock only.

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for
the other parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliTrades are interested in (A) performing some analyses about the

daily variations of each stock during year 2014 and (B) identifying “unstable trends in year
2014” for each stock.

The managers of PoliTrades asked you to develop one single application to address all
the analyses they are interested in. The application has the following arguments: the path
of the input file Prices.txt and two output folders (associated with the outputs of the

following points A and B, respectively).

Specifically, design a single application, based on Spark, and write the corresponding Java

code, to address the following points:

A. Analyses of daily variations in year 2014. Considering only the prices in year 2014, the

application must compute for each stock the number of dates associated with a daily
price variation less than 5 euro. Given a stock and a date, the daily price variation of
that stock in that date is given by the difference between the highest price and the

lowest price reached by that stock in that specific date (highest price–lowest price).
Store in the first HDFS output folder the set of
“stockId,number_of_dates_dailyVariation<5”, one line for each stockId, reporting only

the stocks associated with at least one date in year 2014 with a daily price variation
less than 5 euro.

Sorting the results is not required.

B. Unstable trends in year 2014 for each stock. Considering only the prices in year 2014,

for each stock, the application must select all the sequences of two consecutive dates
characterized by an “unstable trend”. Given a stock and two consecutive dates, the
trend of that stock for those two dates is classified as an “unstable trend” if and only if

the absolute difference between the daily price variations of the two dates is greater

than 1 euro (i.e., abs(daily price variation of the first date - daily price variation of the
second date) > 1). The application stores in the second HDFS output folder the full set
of all unstable trends, one per line. Specifically, each line contains the following

information about one unstable trend: stockId, first date of the unstable trend. Each
output line has the following format:

stockId,first_date

For instance, suppose that stock TSLA has a daily variation equal to 2.03 in April 3,
2014 and a daily variation equal to 5.05 in April 4, 2014. It means that

“TSLA,2014/04/03,2014/04/04” is classified as an “unstable trend” because abs(2.03-
5.05)>1 and the following line is inserted in the output:

TSLA,2014/04/03

Note that you can have many pairs of consecutive dates of unstable trends for each
stock, hence having multiple lines in the output file for each stock.

Version #2

Sorting the results is not required.

Suppose that someone has already implemented the following static method.

 public static String previousDate(String date) of the DateTool class.

o The parameter of this method is a string representing a date (in the format
yyyy/mm/dd). The returned value is a string representing the previous date.

o For example, the invocation

 String yesterday=DateTool.previousDate(“2016/06/20”);

stores “2016/06/19” in the variable yesterday.

Version #2

Big Data: Architectures and Data Analytics

July 16, 2018

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of instances of the reducer of the first job
job1.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /* Select only one of the three options */

Version #2

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Job 2 - Number instances of the reducer of the second job
job2.setNumReduceTasks(0[_] or 1[_] or >=1[_]); /*Select only one of the three

 options*/

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

