

Data science and database technology

Introduction to the course

Transaction processing

- □ On Line Transaction Processing (OLTP)
 - Traditional DBMS usage
- □ Characterized by
 - snapshot of current data values
 - detailed data, relational representation
 - structured, repetitive operations
 - read/write access to few records
 - short transactions
 - isolation, reliability, and integrity are critical (ACID)
 - database size ≈ 100MB-GB

Analytical processing

- □ On Line Analytical Processing (OLAP)
 - Decision support applications
- □ Characterized by
 - "historical" data
 - consolidated, integrated data
 - ad hoc applications
 - read access to millions of records
 - complex queries
 - consistency before and after periodical loads
 - database size ≈ 100GB-TB

Course content

- □ First part (weeks 1-7)
 - Data warehouse design
 - OLAP analysis
 - Data science and data mining
- ∑ Second part (weeks 8-14)
 - DBMS server technology
 - SQL Triggers
 - Distributed databases

Books

□ Course books

- Golfarelli, Rizzi, Data warehouse: teoria e pratica della progettazione, McGraw-Hill, 2006
- Tan, Steinbach, Kumar, Introduction to data mining, Pearson, 2006
- Atzeni, Ceri, Fraternali, Paraboschi, Torlone, Basi di dati
 Architetture e linee di evoluzione, McGraw Hill, 2007
- Atzeni, Ceri, Paraboschi, Torlone, Database systems, McGraw Hill, 1999

Books

○ Other books

- Ramakrishnan, Gehrke, Database Management Systems, McGraw-Hill, 2004
- Kimball e altri, several books and white papers on data warehouse design methodologies and case studies, Wiley
- Han, Kamber, Data mining: concepts and techniques, Morgan Kaufmann, 2006

