Association Rules
Fundamentals

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Priaseton

.4 Association rules

4]

0"

= Objective

= extraction of frequent correlations or pattern from a
transactional database

Tickets at a supermarket

counter = Association rule

TID | Items diapers = beer

1 | Bread, Coke, Milk = 2% of transactions contains
2 Beer, Bread both items

3 | Beer, Coke, Diapers, Milk = 30% of transactions

4 | Beer, Bread, Diapers, Milk containing diapers also

5 | Coke, Diapers, Milk contains beer

TC O

(& Association rule mining

&5
5

Y

99"

= A collection of transactions is given
= a transaction is a set of items

= items in a transaction are R
not ordered 1 Bread, Coke, Milk
= Association rule 2 | Beer, Bread
A, B — C 3 Beer, Coke, Diapers, Milk
« A, B = items in the rule body 4 | Beer, Bread, Diapers, Milk
= C = item in the rule head 5 | Coke, Diapers, Milk
= he = means co-occurrence

= ot causality

= Example
= coke, diapers = milk

plile

U]

AALE O

e, W
/A QL 2\ =
o] 29\
B o rans I Ei (,I Illals
P A d e I t

S e a ‘ () r I

¢ D) s

= Association rule extraction is an exploratory
technigue that can be applied to any data

type
= A transaction can be any set of items
= Market basket data

= Textual data
= Structured data

Transactlonal formats

Fa

= Textual data [

= A document is a transaction L

= Words in a document are items in the transaction

= Data example

= Docl: algorithm analysis customer data mining relationship
= Doc2: customer data management relationship
= Doc3: analysis customer data mining relationship social

= Rule example

customer, relationship = data, mining

Transactlonal formats

= Structured data
= A table row is a transaction
« Pairs (attribute, value) are items in the transaction

= Data example

o Single [70K [No

o Single [85K |Yes

o Single |90K |Yes

Refund Marital Taxable

Status Income Cheat

No Married |< 80K No

= Transaction
Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

= Rule example
Refund=No, MaritalStatus=Married = Cheat = No

DMG Example from: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

70/
Y

C R
@a‘;%;/ o,{‘: D f- | L
- 3
i« Definitions

A
o, i
%o, l00°’

s [temsetis a set including one or more

items
= Example: {Beer, Diapers}

m k-itemsetis an itemset that contains k

items

= Support count (#) is the frequency of

occurrence of an itemset
= Example: #{Beer,Diapers} = 2

= Supportis the fraction of transactions

that contain an itemset
= Example: sup({Beer, Diapers}) = 2/5

m frequent itemsetis an itemset whose

support is greater than or equal to a
minsup threshold

86

TID | Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diapers, Milk
4 Beer, Bread, Diapers, Milk
5 Coke, Diapers, Milk

+ Rule quality metrics

= Given the association rule

A=B
= A, B are itemsets

= Supportis the fraction of transactions containing
both A and B

#{A,B}
IT|

= |T] is the cardinality of the transactional database
= a priori probability of itemset AB
= rule frequency in the database
= Confidenceis the frequency of B in transactions
containing A
Sup(A,B)
Sup(A)
= conditional probability of finding B having found A
= strength” of the "="

plile

= From itemset {Milk, Diapers} the
following rules may be derived

= Rule: Milk = Diapers
= Support
sup=#{Milk,Diapers}/#trans. =3/5=60%
= confidence
conf=#{Milk,Diapers}/#{Milk}=3/4=75%
= Rule: Diapers = Milk
= Same support
s=60%
= confidence
conf=#{Milk,Diapers}/#{Diapers}=3/3
=100%

. Rule quality metrics: example

TID

Items

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

a| | W N

Coke, Diapers, Milk

ASSOC|at|on rule extraction

= Given a set of transactions T, association rule
mining is the extraction of the rules satisfying the
constraints
= support = minsup threshold
« confidence = minconfthreshold
= The result is
=« complete (a//rules satisfying both constraints)
= correct (on/y the rules satisfying both constraints)

= May add other more complex constraints

DSG ’

ASSOC|at|on rule extraction

o Brute-force approach
= enumerate all possible permutations (i.e., association rules)
= compute support and confidence for each rule

= prune the rules that do not satisfy the minsup and minconf
constraints

= Computationally unfeasible

= Given an itemset, the extraction process may be split
= first generate frequent itemsets
= hext generate rules from each frequent itemset

= Example
= Itemset
{Milk, Diapers} sup=60%
= Rules
Milk = Diapers (conf=75%)
Diapers = Milk (conf=100%)

plile

11

o

//lF« ©
e

: Association rule extraction

(o ey e
e

%;
il
&

DD

0"

(1) Extraction of frequent itemsets

= Mmany different techniques
= level-wise approaches (Apriori, ...)
= approaches without candidate generation (FP-growth, ...)
= other approaches

= most computationally expensive step
= limit extraction time by means of support threshold

(2) Extraction of association rules

= generation of all possible binary partitioning of each
frequent itemset
= possibly enforcing a confidence threshold

Given d items, there
are 29 possible
candidate itemsets

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

DSG :

Frequent Itemset Generation

g Brute-force approach

= each itemset in the lattice is a candidate
frequent itemset

= Scan the database to count the support of each
candidate
= match each transaction against every candidate
= Complexity ~ O(|T| 29w)
= |T| is number of transactions

« d is number of items
= W is transaction length

plile)

ARG O
V550 ® < 2\ []] [
j\:\g £ LN % "t
P T, il 4
Ot R o5
S i e
A R/
g x4

s Reduce the number of candidates
= Prune the search space
= complete set of candidates is 24
s Reduce the number of transactions
= Prune transactions as the size of itemsets increases
= reduce |T}|
= Reduce the number of comparisons
= Equal to |T| 2¢

= Use efficient data structures to store the candidates
or transactions

15

s S 0050

,@}\
Ol w\
o
3 5 ‘..a: [} [} u n
-—«= The Apriori Principle
tag ATifmgcler 3
\ % RN .' <) ‘. A"“"

"If an itemset is frequent, then all of its
subsets must also be frequent”

= The support of an itemset can never exceed
the support of any of its subsets

= It holds due to the antimonotone property
of the support measure

= Given two arbitrary itemsets A and B
if A € B then sup(A) = sup(B)

s [t reduces the number of candidates

DSG ’

KO
P\
T\

\
|
=
/

=2} The Apriori Principle

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

!

|

\

/‘

Found to be l:'

Infrequent \

Apr|0r| Algorithm [Agro4]

. Level-based approach
= at each iteration extracts itemsets of a given length k

= Two main steps for each level

= (1) Candidate generation

= Join Step

generate candidates of length k+1 by joining frequent itemsets
of length k

= Prune Step

apply Apriori principle: prune length k+1 candidate itemsets
that contain at least one k-itemset that is not frequent

= (2) Frequent itemset generation
= scan DB to count support for k+1 candidates
= prune candidates below minsup

0} Apriori Algorithm [Agro4]

s Pseudo-code

C,. Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for (k=1; L, '=T; k++) do
begin
C..; = candidates generated from L;;

for each transaction ¢in database do
increment the count of all candidates in C,;
that are contained in ¢

L., = candidates in C_,, satisfying minsup
end
return v, L,

19

i Generating Candidates

= Sort L, candidates in lexicographical order

For each candidate of length k

|
= Self-join with each candidate sharing same L,_; prefix

= Prune candidates by applying Apriori principle
Example: given L,={abc, abd, acd, ace, bcdy

= Self-join
« abcd from abc and abd

= acde from acd and ace

= Prune by applying Apriori principle
= gcdeis removed because ade, cde are not in L;

« C~{abcd}

plile

20

”~

L4t Apriori Algorithm: Example
| Example DB

TID ltems
{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

minsup>1

plile

=

© 0 ~NO U~ WN

=
o

21

% Generate candidate 1-itemsets
Example DB

TID ltems -

1 {A,B} 1

2 {B,C,D} itemsets|sup
1st DB

3 | {AC,D,E} {Ab |7

4 | {ADFE) ﬁ‘ B | s

5 {A,B,C} {C} 7

6 {A,B,C,D} {D} 5

7 {B,C} {E} 3

8 {A,B,C}

9 {A,B,D}

10 | {B,C,E}

minsup>1

plile

i Prune infrequent candidates in C;
| Example DB

TID ltems
1 {A,B} ¢;
2 {B,C,D} : itemsets|sup
3 | {AC.D.E} 1526[])”'3 A | 7
4 | {AD,E} B} |8 _
5 | {AB,C} ‘ c |7 ‘ L= ¢
6 | {AB,C,D} D} |5
7 {B,C} {E} | 3
8 | {AB,C}
9 | 1ABD} | u All itemsets in set C, are frequent
10 | {B.C,E} according to minsup>1
minsup>1

DSG 25

=4} Generate candidates from L,

¢

itemsets

L, {A,B}
itemsets| sup {A,C}
{At | 7 {A,D}
{B} | 8 {A.E}
cy |7 {B,C}
D} | 5 {B,D}
{(E} | 3 {B,E}
{C,D}

{C,E}

{D,E}

4} Count support for candidates in C,

L,

¢

itemsets

itemsets

{A}
1B}
{C}
1D}
{E}

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B.D}
{B.E}
{C.D}
{C,E}
{D.E}

2nd
DB
SCan

¢

itemsets

{A,B}
{A,C}
{A,D}
{AE}
{B,C}
{B,D}
{B.E}
{C.D}
{C.E}
{D.E}

wm
I\)I\)OOI—\OOO)I\JAAU‘I%

25

L,

¢

itemsets

itemsets

{A}
1B}
{C}
1D}
{E}

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B.D}
{B.E}
{C.D}
{C,E}
{D.E}

2nd
DB
SCan

¢

itemsets

L,

=4} Prune infrequent candidates in G,

{A,B}
{A,C}
{A,D}
{AE}
{B,C}
{B,D}

wn
c
OOO)I\J-b-bU'I.O

itemsets

{C.D}
{C.E}
{D.E}

N W

{A,B}
AC}
{A,D}
{AE}
{B,C}
{B,D}
{C.D}
{C,E}
{D,E}

wm
wawmmhhm%

26

L,

itemsets

=4t Generate candidates from L,

Cs

{A,B}
A.C}
{A,D}
{A,E}
{B,C}
{B,D}
{C,D}
{C,E}
{D,E}

0
NN WWON AR UIE

itemsets

{A,B,C}
{A,B,D}
{A,B,E}
{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

27

Qg:gal' % o(o)a‘,:g,‘
/5‘ W et '5\ n n ™ n
riori principle on
é L; K ;' if‘? 3
A s/

L C;

itemsets| sup itemsets
{AB} | 5 {A,B,C}
{AC} | 4 {A,B,D}
AD} | 4| ErEEd
{AE} | 2 {A,C,D}
{B.C} | 6 ‘ {A.C.E}
{BD} | 3 {A,D,E}
{C.D} | 3 {B,C,D}
{CE} | 2 {C,D,E}
{D,E} | 2

= Prune {A,B,E}
» Its subset {B,E} is infrequent ({B,E} is not in L))
DSG 21

L,

itemsets

{A,B}
{A.C}
{A,D}
{AE}
{B.C}
1B.D}
{C,D}
{C.E}
{D,E}

wm
wawmmhhm%

=

Cs

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB

EABEH<can

=

Cs

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

7
HNNHNNQJ%

=4 Count support for candidates in C,

29

2! Prune infrequent candidates in C;

R) 2l
L

itemsets

{A,B}
{A.C}
{A,D}
{AE}
{B.C}
1B.D}
{C,D}
{C.E}
{D,E}

wm
wawmmhhm%

=

Cs

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB

EABEH<can

=

Cs

itemsets

{A,B,C}
{A,B,D}
{A,C,D}

&
l\)l\)(.JuJ13

Ls

itemsets

{A,D,E}
{B,C,D}

N

{A.B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

wn
c
I\JI\)I\JI\JC)\)tj

= {A,C,E} and {C,D,E} are actually infrequent
= They are discarded from

plile

30

=4} Generate candidates from L;

Ls

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

n
c
N NN WS

-

¢

itemsets

{A,B,C,D}

31

.

Q

@0

.4 Apply Apriori principle on C,

|
{

L;
itemsets
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

e

‘ itemsets
{A,B,C,D}

wn
C
l\)l\)l\)l\)(}\).c

s Check if {A,C,D} and {B,C,D} belong to L,
= L;contains all 3-itemset subsets of {A,B,C,D}
= {A,B,C,D} is potentially frequent

plile

Ls

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

wn
c
I\JI\)I\JI\)(.JQ13

-

itemsets

{A,B,C,D}

C, |
itemsets [sup
{AB,CD}| 1

33

Ls

itemsets

{A,B,C}

itemsets

{A,B,D}

sup |

‘ itemsets
{A,B,C,D}

{A,C,D}
{A,D,E}
{B,C,D}

wn
c
l\)l\)l\)l\)f.}\)13

= {A,B,C,D} is actually infrequent
= {AB,C,D} is discarded from C,

plile

34

ALEC O
Q&“ N

Example DB

L,

itemsets

{A}
1B}
1C}
1D}
1E}

W o1 N 0 N|C

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

minsup>1

plile

Ls

i Final set of frequent itemsets

L,

itemsets

sup

itemsets

)]
-
=)

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

NN N DN W

{A,B}
{A.C}
{A,D}
{AE}
{B,C}
{B.D}
{C,D}
{C.E}
{D,E}

&)

NDNWWODNMD

35

Countmg Support of Candidates

o Scan transaction database to count support of
each itemset

« total number of candidates may be large
= one transaction may contain many candidates

= Approach [Agro4]

» candidate itemsets are stored in a hash-tree
= /eaf node of hash-tree contains a list of itemsets and counts
= /nterior node contains a hash table
= subset function finds all candidates contained in a
transaction
=« Mmatch transaction subsets to candidates in hash tree

DSG .

Performance Issues in Apriori

= Candidate generation

=« Candidate sets may be huge

= 2-itemset candidate generation is the most critical
step

= extracting long frequent intemsets requires
generating all frequent subsets

= Multiple database scans

= 11 +1 scans when longest frequent pattern length
IS n

+ Factors Affecting Performance

= Minimum support threshold
= lower support threshold increases number of frequent itemsets
= larger number of candidates
= larger (max) length of frequent itemsets
= Dimensionality (number of items) of the data set
= Mmore space is nheeded to store support count of each item

= if number of frequent items also increases, both computation and
I/O costs may also increase

= Size of database

= since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

= Average transaction width
= transaction width increases in dense data sets

= Mmay increase max length of frequent itemsets and traversals of
hash tree

= humber of subsets in a transaction increases with its width

DSG s

;
Y

1

S

"?‘a S/
Ko S ey

Improving Apriori Efficiency

LN
gt
i R
3 s, ;G;

15 |
|~ =
[\ il st o 3
VTR

\
‘\‘:“n‘h

= Hash-based itemset counting [Yu95]

= A k-itemset whose corresponding hashing bucket count is
below the threshold cannot be frequent

= [ransaction reduction [Yu95]

= A transaction that does not contain any frequent k-itemset is
useless in subsequent scans

= Partitioning [Sav96]

= Any itemset that is potentially frequent in DB must be frequent
in at least one of the partitions of DB

Improving Apriori Efficiency

= Sampling [T0i96]

= Mmining on a subset of given data, lower support threshold + a
method to determine the completeness

= Dynamic Itemset Counting [Motw98]

= add new candidate itemsets only when all of their subsets are
estimated to be frequent

40

A2 0

by
%0 s

.4 FP-growth Algorithm [Han00]

4]
0o

= Exploits a main memory compressed representation
of the database, the FP-tree

= high compression for dense data distributions
= less so for sparse data distributions

= complete representation for frequent pattern mining
= enforces support constraint

= Frequent pattern mining by means of FP-growth
= recursive visit of FP-tree

= applies divide-and-conquer approach
= decomposes mining task into smaller subtasks

= Only two database scans
= count item supports + build FP-tree

plile .

¢ FP-tree construction
- Example DB

= (1) Count item support and prune
T i(te)ms below minSlI.?pp thresholljd
; {éA(’:Bé} = (2) Build Header Table by sorting
— items in decreasing support order
3 | {A.C,D,E}
4 {A,D,E} Header Table
5 {A,B,C} ltem| sup
6 {A,B,C,D} {B}| 8
7 {B.C} AY| 7
8 {A,B,C} {C}| 7
9 {A,B,D} {D}| 5
10 {B,C,E} {(E}| 3
minsup>1

plile .

(Cr2 A o,

S,

o

Example DB
TID ltems
1 {A,B}
2 {B,C,D}
3 | {AC,D,E}
4 {A,D,E}
5 {A,B,C}
6 | {AB,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 | {B,C,E}
minsup>1

(=4} FP-tree construction

= (1) Count item support and prune
items below minsup threshold

= (2) Build Header Table by sorting
items in decreasing support order

= (3) Create FP-tree

For each transaction ¢in DB
= order transaction ¢items in
decreasing support order
= Same order as Header Table
= Insert transaction ¢in FP-tree
= Use existing path for common prefix

= Create new branch when path
becomes different

43

~&: FP-tree construction

Tr/ansaction Sorted transaction

TID | Iltems ‘ TID| Iltems
1 {A,B} 1 | {BA}

FP-tree

Header Table {}

ltem| sup
{B} | 8

{A} | 7
{C}| 7
{D}| 5
{E} | 3

. FP-tree construction

Tr/émsaction Sorted transaction

TID| Items ‘ TID| Items
2 | {B,C,D} 2 | {B,C,D}

FP-tree

Header Table

ltem | sup
{B}| 8

{A} | 7
{C}| 7
{D}| 5
{E} | 3

. FP-tree construction

Tr/émsaction Sorted transaction

TID | Items ‘ TID | Items
3 [{ACD,E} 3 |{A,C,D,E}

Header Table } FP-tree
ltem | sup B>
{B} | 8
{Ab| 7 /\
{C}y| 7 A:l C:1
{D}| 5
{E} | 3 /
D:1

=4} FP-tree construction

Transaction Sorted transaction

TID | Items ‘ s T 7ADE
4 | {ADE} 4 | {A,D,E}

FP-tree

Header Table -

Item | sup
{B}| 8
{Ab| 7
{C}| 7
{D}| 5
{E} | 3

D“B/\G E:l 47

=} FP-tree construction

Transaction Sorted transaction

TID | Iltems ‘ TID | Items
5 | {AB,C} 5 | {BAC}

Header Table

ltem | sup
{B}| 8
{A}

1C}

E

;
D} 5
Eh| 3

=4} FP-tree construction

Transaction Sorted transaction

TID | ltems ‘ TID | Items
6 {A’B,C’D} 6 {B,A[CID}

Header Table
Item| sup
{B}| 8
{Ab| 7
{C}| 7
{D}| 5
{E} | 3

Transaction

TID | Items

/ 1B,C}

Header Tab

Item | sup
{B}| 8
{Ab| 7
{C}| 7
{D}| 5
{E} | 3

S

.} FP-tree construction

Sorted transaction

=

D:1

E:1

TID | Items
FP-tree
\
A:2
C:1
D:1
D:1 E:1

50

=} FP-tree construction

Transaction Sorted transaction

TID | Iltems ‘ TID | Items
8 | {ABC) 8 | {BAC}

Header Table

Item | sup
{B}| 8
{Ab| 7
{C}| 7
{D}| 5
{E} | 3

=} FP-tree construction

Transaction Sorted transaction

TID | Items ‘ o 1 TBAD
9 | {AB,D} 9 | {B,AD}

Header Table

ltem | sup
{B}| 8
{A}

1C}

E

;
D} 5
Eh| 3

=4} FP-tree construction

Transaction Sorted transaction

TID | ltems ‘ TID | Items
10| {B,C,E} 10 BLE

Header Table

ltem | sup
{B}| 8
{A}

1C}

E

;
D} 5
Eh| 3

Header Table L
ltem| sup | ______ AB:8| 0 eee-- »AD
{B}| 8 p----"7° e /\
AR >
Ccy| 7 b7 WA5 - - M C3 - ¥C:1| D:d
D}y 5 | /\ ''''' J]
{E} 3 \\ \\\‘\\ /// I'/ \\\ ,Il
‘\ ‘| \\’C 3—, D 1__> D:]./ E:l‘\ D 1*/ /) E:l
\ : 7 'A \‘ I/
N ADiLp WELF
ltem pointers are used to assist s

frequent itemset generation

ALE O

o4 FP-growth Algorithm

S
&
X4

= Scan Header Table from lowest support item up

= For each item i in Header Table extract frequent
itemsets including item i and items preceding it in
Header Table

= (1) build Conditional Pattern Base for item i (i-CPB)
« Select prefix-paths of item i from FP-tree

= (2) recursive invocation of FP-growth on i-CPB

= Consider item D and extract frequent itemsets including
=« D and supported combinations of items A, B, C

Header Table)] FP-tree

ltem| sup
{B} | 8
{Ab| 7
{C}

{E}

= (1) Build D-CPB
= Select prefix-paths of item D from FP-tree

{}| FP-tree

Header Table
ltem| sup
{B}| 8
{Ab| 7
{C}

{E}

Frequent
itemset:
D, sup(D) =5

\\ // \‘ E:l -
D“B/\G el ,/’/ 57

-~ -
~ -
= o — -

“:?%Conditional Pattern Base of D

Header Table i } | FP-tree

ltem | sup
(B}| 8 p--m

A}

D-CPB

‘ Items ‘sup ‘

Header Tab
ltem | sup
{B}| 8
{Ab| 7
C

{E}

D-CPB

Items |sup

HeéaerTab

ltem

sup

1B}
A}
C

{E}

8

v
v

3

D-CPB

Items

sup

{B,AC}
1B,A}

1

e
G)

.‘/ /

HeaaerTab

S

ltem | sup
{B}| 8
{A} | 7
C {

{E} | 3
D-CPB
Items |sup
{BAC} | 1
{B,A} 1
{B,C} 1

1)

~~Z:Conditional Pattern Base of D

FP-tree

61

‘Q?SConditionaI Pattern Base of D

Heéder Table { }| FP-tree

ltem | sup
{B}| 8
{A} | 7
Ct| 7

{E}| 3
D-CPB
Items |sup

{BAC} | 1
{B,A} 1
{B,C} 1
{A,C} 1

(A T1]

DEG .

{4} Conditional Pattern Base of D
(1) Build D-CPB

= Select prefix-paths of item D from FP-tree

D-CPB

Items |sup

{B,A,C}
{B/A}
{B,C}
{AC}

{A}

|—L|—L|_L|_L|—I-

-

D-conditional
Header Table

Item | sup

1A}
{B}
1C}

w w h

0 D-conditional
FP-tree

/\

Ad| _---- » B:1

‘M C:1F--%C:1

= (2) Recursive invocation of FP-growth on D-CPB

plile

63

=4 Conditional Pattern Base of DC
= (1) Build DC-CPB

= Select prefix-paths of item C from D-conditional FP-tree

D-CPB

Items |sup

{B,A,C}
{B/A}
{B,C}
{AC}

{A}

|—L|—L|_L|_L|—I-

D-conditional
Header Table

Item | sup

By 4 t--
R

1)

Frequent itemset:
DC, sup(DC) = 3

D-conditional
FP-tree

— -
-
-

Items |sup

{AB} | 1
{Ay |1
{B} |1

Condltlonal Pattern Base of DC

(1) Build DC-CPB
= Select prefix-paths of item C from D-conditional FP-tree

DC-CPB DC-conditional {3} DC-conditional
Items |sup Header Table T~ FP-tree
{AB} |1 Item| sup o A2 W B:1

{Ay |1 ‘ Ayl 2 |-
{B} |1 B} 2 |- _Jgq D

= (2) Recursive invocation of FP-growth on DC-CPB

DSG .

.~4:Conditional Pattern Base of DCB

= (1) Build DCB-CPB
= Select prefix-paths of item B from DC-conditional FP-tree

DC-CPB DC-conditional {3} DC-conditional
Items |sup Header Table FP-tree

{AB} |1 Item | sup _
Ay |1 q {Ay] 2 |-
@ |1 | [} - -
l ’ DCB-CPB

Items |sup
Frequent itemset: {A} 1
DCB, sup(DCB) = 2

~ZiConditional Pattern Base of DCB

= (1) Build DCB-CPB
= Select prefix-paths of item B from DC-conditional FP-tree

DEB-CPS = Item A is infrequent in DCB-CPB

Items |sup |
{Ay |1 = A is removed from DCB-CPB
= DCB-CPB is empty

= (2) The search backtracks to DC-CBP
plile

67

= (1) Build DCA-CPB
= Select prefix-paths of item A from DC-conditional FP-tree

DC-CPB DC-conditional {3} DC-conditional
Items |sup Header Table FP-tree
{A,B} Item | sup B:1

1
{A} |1 q
By |1 {B}| 2 ;-
DCA-CPB is empty

Frequent itemset: (no transactions)

DCA, sup(DCA) = 2 I

= (2) The search backtracks to D-CBP
DSG .

2} Conditional Pattern Base of DB

= (1) Build DB-CPB
= Select prefix-paths of item B from D-conditional FP-tree

D-CPB D-conditional 1} Dclg;_cg:telce)nal
Items |sup Header Table
{BIAIC} 1 Item sup
G0 | 1 | -
{A,C} 1 {C}
{A} 1

Frequent itemset:

DB, sup(DB) = 3

69

% Conditional Pattern Base of DB
+ (1) Build DB-CPB

= Select prefix-paths of item B from D-conditional FP-tree

DB-CPB

Items

sup

1A}

-

DB-conditional
Header Table

Items

sup

1A}

2

{}

-- A2

DB-conditional
FP-tree

= (2) Recursive invocation of FP-growth on DB-CPB

plile

70

~ZiConditional Pattern Base of DBA

= (1) Build DBA-CPB
= Select prefix-paths of item A from DB-conditional FP-tree

DB-conditional

DB-CPB Header Table
Items |sup Items |sup DB-conditional
{A} 2 ‘ FP-tree
DBA-CPB is empty
Frequent itemset: (no transactions)

DBA, sup(DBA) = 2

= (2) The search backtracks to D-CBP J
DSG g

~4: Conditional Pattern Base of DA
= (1) Build DA-CPB

= Select prefix-paths of item A from D-conditional FP-tree

D-CPB

Items |sup

{B,A,C}
{BA}
{B,C}
{AC}

{A}

|_I.|_L|_L|_L|—L

D-conditional
Header Table

0 D-conditional
FP-tree

,,,,, » B:1

---» C:1

Frequent itemset:
DA, sup(DA) = 4

DA-CPB is empty
(no transactions)

.]

The search ends

72

“:';; Frequent itemsets with prefix D

. Frequent itemsets including D and supported
combinations of items B,A,C

Example DB
TID ltems
1 {A,B} itemsets| sup
2 {B,C,D} {D} 5
3 | {AC,D,E} %g,gi ;1
4 {A,D,E} :
5 | {AB,C} ‘ ,iCéDé 2
6 | {AB,C,D} EA,C,Di ’
7 {B,C} At
8 {A,B,C} {B.CD}| 2
B J {A.B,D} minsup>1
DN\G 10 | {B,C,E}

Other approaches

o Many other approaches to frequent itemset extraction

= May exploit a different database representation
= represent the tidset of each item [Zak00]

Horizontal
Data Layout Vertical Data Layout
TID Items A B C D E
1 |ABE 1 1 2 2 1
2 |B,C,D 4 2 3 4 3
3 |CE 5 5 4 5 6
4 |A,C,D 6 7 8 9
5 |A,B,C,D 7 8 9
6 |AE 8 10
7 |A,B 9
8 |A,B,C
9 |A,C,D
10 |B

D“B/\G From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

I0NS

)
(O
4+
-
QD
0]
0
e
Q.
0,
a'd
)
O
(O
Q.
=
O
O

identical support as their supersets

TID | AL]A2[A3] A4 A5]| A6 | A7]| A8| A9]Al0[B1]|B2[B3|B4[B5|B6|B7|B8[B9|B10j C1|Cc2|c3]|cafcs]|ce|c7]|cs|colcio

= Some itemsets are redundant because they have

OO0 O0OO0OO0OO0DO0DO0OO0OO dAd ™ -
O OO O0OO0OO0OO0O0O0O0O ™ dd
OO0 00000000 dAd ™ -
O OO O0OO0OO0OO0O0O0O0O ™ dd -
OO0 O0OO0OO0O0DO0DO0OO0OO dd -
O OO O0OO0OO0OO0OO0CO0OO0O ™ dd o
OO0 O0OO0OO0OO0DO0DO0O0OO dd -

OCOO0O0O0O0O0O0OO o oo o

CO0O0O0O0O0O0O0O - - k=

OO0 O0OO0O0O0DO0O0O0O0OdAdAddd

OO0 0O ddddd OO0OO0OO0OO0o

OO0 00O dddddO0OO0OO0OO0O0O

OO0 0O dddddOO0OO0OO0OO0o

OO0 00O dddd+d0O0O0OO0OO0OO0o

OO0 0O dddddOO0OO0OO0OO0o

OO0 00O dddd+d0O0O0OO0OO0OO0O

OO0 0O ddcdddOO0OO0OO0OO0o

OO0 00O ddd+dA+dH0OOOO0OO

OO0 0O ddcdddOO0OO0OO0OO0o

OO0 00O ddd+d+dHOOOOO

A A A A1 00000000 O0O0o

A A A0 0000000 O0O0o

A A A 400000000 O0O0o

A A A 4100000000 O0O0o

A A A 400000000 O0O0o

A A A 100000000 O0O0o

A A A 400000000 O0O0o

A A A 400000000 O0O0o

A A A 400000000 O0O0o

A A A1 00000000 O0O0o

J

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

O

K

N

10
k=1

—|a|mfs|w|o|~loo|S(TYD TN

= Number of frequent itemsets = 3x

75

= A compact representation is needed

plile

An itemset is frequent maximal if none of its immediate supersets
Is frequent

Maximal
Itemsets

Infrequent
ltemsets <+—

DOG

76

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

D) /‘

jw : Closed Itemset

- An itemset is closed if none of its immediate

supersets has the same sup

itemset

sup

ltems

{A.B}
{B,C,D}
{A,B,C,D}
{A,B,D}
{A,B,C,D}

_I
N —
o b~ w I—‘U

{A}
1B}
{C}
{D}
1A,B}
{A.C}
{A,D}
{B,C}
{B,D}
{C.D}

WA WwDhNhDNER~WO A

hort as the itemset

itemset

{A,B,C}
{A,B,D}
{A,C,D}
{B,C,D}
{A,B,C,D}

N WD WNICS

DMG From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

77

TID

ltems

ABC

ABCD

BCE

ACDE

g |~ W (N -

DE

Not supported by /,/"/

any transactions =TT TTTTTTT T >

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

78

.4 Maximal vs Closed Frequent Itemsets

Closed but
not maximal

Closed and
maximal

Closed =9

Maximal = 4

DSG 2

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Maximal vs Closed Itemsets

Frequent
ltemsets

Closed
Frequent
Itemsets

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

80

» Effect of Support Threshold

= Selection of the appropriate minsup
threshold is not obvious

« If minsup is too high

= itemsets including rare but interesting items may
be lost

example: pieces of jewellery (or other expensive
products)

« If minsup is too low
= it may become computationally very expensive

= the number of frequent itemsets becomes very
large

AIE G
A2 0

[SE

- AN) 4

.4 Interestingness Measures

= A large number of pattern may be extracted

= rank patterns by their interestingness
= Objective measures

= rank patterns based on statistics computed from data

« initial framework [Agr94] only considered support and
confidence

= Other statistical measures available
= Subjective measures

= rank patterns according to user interpretation [Silb98]

= interesting if it contradicts the expectation of a user
= interesting if it is actionable

plile

82

! Confidence measure: always reliable?

= 5000 high school students are given

= 3750 eat cereals
= 3000 play basket
= 2000 eat cereals and play basket

= Rule
play basket — eat cereals
sup = 40%, conf = 66,7%
is misleading because eat cereals has sup 75% (>66,7%)

- E:‘Oﬁ) Iﬁ-gqqﬁae%%?,do?y basket [not basket [total
rule head cereals 2000 1750| 3750
= Negative not cereals| 1000 250| 1250
correlation total 3000 2000{ 5000

DSG .

Correlation = =

D

B

Correlatlon or lift

rA=_B
P(A,B)

conf(r)

P(A)P(B)

= Statistical independence
= Correlation =1

= Positive correlation
= Correlation > 1

= Negative correlation
= Correlation < 1

W

sup(B)

84

Example

s Association rule

play basket — eat cereals
has corr = 0.89

= hegative correlation
= but rule

play basket = not (eat cereals)
has corr = 1,34

85

| Measure Formmnla
1 | ¢-coefficient P(A,B)—P(A)P(B)
s P g D) S ety PUAg2B) —imaxg PUA) P(8:)
2 | Goodman-Kruskal’s {A) : }k(_ _'T) . ﬂ—n:::axj ;5(A;.':li;:n:;xk s (5:) 3 =P (B
. P{A,B)P(A,E
3 Ddds ratic (ﬂ] m . _
) P(4,BIP(AB)—P{4,B)P(A,B) _ a—1
4 Yule’s @ P(ABIP(AB\} P(ABYP(A,B) = o4l
1 JP(A!B}P(E}_JP(A!E}P(Z!B} _ o1
5| Yues ¥ VP4, B)P(AB)++/P(ABP(A,B) _ vVotl
P(4,B)+P(4,B)—P(4)P(B)—P(A1P(B)
6 | Kappa (x) -P{APB)-PAIPE)
. 2 2 PlAL By log PlAJF{B;]
7 | Mutual Information (M} | o504, 7iog P(a, i &, P(B;) log P(E;)
8 | J-Measure {J) max (P(4, B) log(554) + P(AB) log(Z22),
P(A|B = P(A|B
P4, B)log(5i") + P(AB) 1og(5553
9 | Gini index {G) max (P(fl] [P(B|A)* + P(B|A)"] + P(4)[P(B|A)" + P(B|4)"]
—P(B)* - P{B)’,
P(B)[P{A|B)" + P(A|B)"] + P(B)[P(A|B)” + P(A|B)’]
—P(A)? - P(A)*)
10 | Support {s) P{A, B)
11 | Confidence {¢) max{P{B|A), P(A|B))
NP{A,B)+1 NP{4,B)+1
12 | Laplace {L) max ng(Ajj_g ’ NIE‘(B)-:]I—H)
. P(AIP(B) P(B)P(A)
13 | Convietion (V) max | =5 “pinay)
P(4,B
14 | Interest (I} P_(,W;B_
15 | cosine (I5) P(A;P(B}
16 | Piatetsky-Shapiro’s (PS) | P{A,B)— P{A)P(B)
17 | Certainty factor {F') max (P(?LA;(_;(B) . P(T_BIE-E;(A})
18 | Added Value {AV) max{P{B|A) — P{B), P{A|B) — P{A))
. P(A,B+P(AB) 1—P{AP(B)—P(A\P(B)
19 | Collective strength {5) P{A&) P (B} 1 P(A)P (B} - P(A.B)_P(A5)
P(4,B
20 | Jaceard (() P(A] 1 P(B)_P(A,B)
21 | Klosgen (K) / P{A, Bymax({P{B|A) — P(B), P{A|B) — P(A))

