Association Rules Fundamentals

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Association rules

- Objective
- extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk
\ldots	\ldots

- Association rule diapers \Rightarrow beer
- 2% of transactions contains both items
- 30\% of transactions containing diapers also contains beer

Association rule mining

- A collection of transactions is given
- a transaction is a set of items
- items in a transaction are not ordered
- Association rule

$$
A, B \Rightarrow C
$$

- $\mathrm{A}, \mathrm{B}=$ items in the rule body
- $C=$ item in the rule head
- The \Rightarrow means co-occurrence

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk
\ldots	\ldots

- not causality
- Example
- coke, diapers \Rightarrow milk

Transactional formats

- Association rule extraction is an exploratory technique that can be applied to any data type
- A transaction can be any set of items
- Market basket data
- Textual data
- Structured data

Transactional formats

- Textual data
- A document is a transaction

- Words in a document are items in the transaction
- Data example
- Doc1: algorithm analysis customer data mining relationship
- Doc2: customer data management relationship
- Doc3: analysis customer data mining relationship social
- Rule example
customer, relationship \Rightarrow data, mining

Transactional formats

- Structured data
- A table row is a transaction
- Pairs (attribute, value) are items in the transaction
- Data example

- Transaction

Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

- Rule example

Refund $=$ No, MaritalStatus $=$ Married \Rightarrow Cheat $=$ No

Definitions

- Itemset is a set including one or more items
- Example: \{Beer, Diapers\}
- k-itemset is an itemset that contains k items
- Support count (\#) is the frequency of occurrence of an itemset
- Example: \#\{Beer,Diapers\} = 2
- Support is the fraction of transactions

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- Example: sup(\{Beer, Diapers $\}$) $=2 / 5$
- Frequent itemset is an itemset whose support is greater than or equal to a minsup threshold

Rule quality metrics

- Given the association rule

$$
A \Rightarrow B
$$

- A, B are itemsets
- Support is the fraction of transactions containing both A and B

$$
\frac{\#\{A, B\}}{|T|}
$$

- $|\mathrm{T}|$ is the cardinality of the transactional database
- a priori probability of itemset AB
- rule frequency in the database
- Confidence is the frequency of B in transactions containing A

$$
\frac{\sup (A, B)}{\sup (A)}
$$

- conditional probability of finding B having found A
- "strength" of the " \Rightarrow "

Rule quality metrics: example

- From itemset \{Milk, Diapers\} the following rules may be derived
- Rule: Milk \Rightarrow Diapers
- support

$$
\text { sup }=\#\{\text { Milk,Diapers }\} / \# \text { trans. }=3 / 5=60 \%
$$

- confidence

$$
\text { conf=\#\{Milk,Diapers\}/\#\{Milk\}=3/4=75\% }
$$

- Rule: Diapers \Rightarrow Milk

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- same support

$$
s=60 \%
$$

- confidence

$$
\begin{aligned}
\text { conf } & =\#\{\text { Milk,Diapers }\} / \#\{\text { Diapers }\}=3 / 3 \\
& =100 \%
\end{aligned}
$$

Association rule extraction

- Given a set of transactions T, association rule mining is the extraction of the rules satisfying the constraints
- support \geq minsup threshold
- confidence \geq minconfthreshold
- The result is
- complete (al/ rules satisfying both constraints)
- correct (only the rules satisfying both constraints)
- May add other more complex constraints

Association rule extraction

- Brute-force approach
- enumerate all possible permutations (i.e., association rules)
- compute support and confidence for each rule
- prune the rules that do not satisfy the minsup and minconf constraints
- Computationally unfeasible
- Given an itemset, the extraction process may be split
- first generate frequent itemsets
- next generate rules from each frequent itemset
- Example
- Itemset
\{Milk, Diapers\} sup=60\%
- Rules

Milk \Rightarrow Diapers (conf=75\%)
Diapers \Rightarrow Milk (conf=100\%)

Association rule extraction

(1) Extraction of frequent itemsets

- many different techniques
- level-wise approaches (Apriori, ...)
- approaches without candidate generation (FP-growth, ...)
- other approaches
- most computationally expensive step
- limit extraction time by means of support threshold
(2) Extraction of association rules
- generation of all possible binary partitioning of each frequent itemset
- possibly enforcing a confidence threshold

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach
- each itemset in the lattice is a candidate frequent itemset
- scan the database to count the support of each candidate
- match each transaction against every candidate
- Complexity ~ O (IT| $\left.2^{\mathrm{d}} \mathrm{w}\right)$
- |T| is number of transactions
- d is number of items
- w is transaction length

Improving Efficiency

- Reduce the number of candidates
- Prune the search space
- complete set of candidates is $2^{\text {d }}$
- Reduce the number of transactions
- Prune transactions as the size of itemsets increases
- reduce |T|
- Reduce the number of comparisons
- Equal to |T| $2^{\text {d }}$
- Use efficient data structures to store the candidates or transactions

The Apriori Principle

"If an itemset is frequent, then all of its
subsets must also be frequent"

- The support of an itemset can never exceed the support of any of its subsets
- It holds due to the antimonotone property of the support measure
- Given two arbitrary itemsets A and B if $A \subseteq B$ then $\sup (A) \geq \sup (B)$
- It reduces the number of candidates

The Apriori Principle

Apriori Algorithm [Agr94]

- Level-based approach
- at each iteration extracts itemsets of a given length k
- Two main steps for each level
- (1) Candidate generation
- Join Step
- generate candidates of length $k+1$ by joining frequent itemsets of length k
- Prune Step
- apply Apriori principle: prune length k+1 candidate itemsets that contain at least one k-itemset that is not frequent
- (2) Frequent itemset generation
- scan DB to count support for k+1 candidates
- prune candidates below minsup

Apriori Algorithm [Agr94]

- Pseudo-code
C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do
begin
$C_{k+1}=$ candidates generated from $L_{k} ;$
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
$L_{k+1}=$ candidates in C_{k+1} satisfying minsup
end
return $\cup_{k} L_{k i}$

Generating Candidates

- Sort L_{k} candidates in lexicographical order
- For each candidate of length k
- Self-join with each candidate sharing same L_{k-1} prefix
- Prune candidates by applying Apriori principle
- Example: given $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-join
- abcd from $a b c$ and $a b d$
- acde from acd and ace
- Prune by applying Apriori principle
- acde is removed because ade, cde are not in L_{3}
- $C_{4}=\{a b c d\}$

Apriori Algorithm: Example

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

minsup>1

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Generate candidate 1-itemsets

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

$1^{\text {st }} \mathrm{DB}$scan	C_{1}	
	itemsets	sup
	\{A\}	7
	\{B]	8
	\{C\}	7
	\{D\}	5
	\{E\}	3

minsup>1

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Prune infrequent candidates in C_{1}

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

$\begin{aligned} & 1^{\text {st }} \mathrm{DB} \\ & \text { scan } \end{aligned}$	C_{1}	
	itemsets	sup
	\{A\}	7
	\{B\}	8
	\{C\}	7
	\{D\}	5
	\{E\}	

- All itemsets in set C_{1} are frequent according to minsup>1
minsup>1
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Generate candidates from L_{1}

L_{1}		C_{2}
		itemsets
		$\{A, B\}$
itemsets	sup	$\{A, C\}$
\{A\}	7	$\{A, D\}$
\{B\}	8	$\{\mathrm{A}, \mathrm{E}\}$
\{C\}	7	\{B,C\}
\{D\}	5	\{B,D\}
\{E\}	3	\{B,E\}
		\{C,D\}
		\{C,E\}
		\{D,E\}

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Count support for candidates in C_{2}

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Prune infrequent candidates in C_{2}

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Generate candidates from L_{2}

L_{2}		C_{3}
itemsets	sup	items
$\{A, B\}$	5	
$\{\mathrm{A}, \mathrm{C}\}$	4	$\{A, B, D\}$
$\{A, D\}$	4	$\{A, B, E\}$
\{A,E\}	2	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$
$\{\mathrm{B}, \mathrm{C}\}$	6	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$
$\{\mathrm{B}, \mathrm{D}\}$	3	$\{\mathrm{A}, \mathrm{D}, \mathrm{E}\}$
\{C,D\}	3	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}\}$
\{C,E\}	2	\{C,D,E\}
\{D,E\}	2	

Apply Apriori principle on C_{3}

L_{2}		C_{3}
itemsets	sup	itemsets
\{A,B\}	5	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
$\{\mathrm{A}, \mathrm{C}\}$	4	\{A,B, $\mathrm{C}, \mathrm{D}\}$
\{A,D\}	4	AA,B,E]
\{A,E\}	2	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$
\{B,C\}	6	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
\{B,D\}	3	$\{A, D, E\}$
\{C,D\}	3	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$
\{C,E\}	2	\{C,D,E\}
\{D,E\}	2	$\{\mathrm{C,D,E}\}$

- Prune $\{A, B, E\}$
- Its subset $\{B, E\}$ is infrequent $\left(\{B, E\}\right.$ is not in $\left.L_{2}\right)$

Count support for candidates in C_{3}

L_{2}		C_{3}	C_{3}		
itemsets	sup				
$\{\mathrm{A}, \mathrm{B}\}$	5	\{A,B,C\}		itemsets	sup
$\{\mathrm{A}, \mathrm{C}\}$	4	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	$3{ }^{\text {rd }}$	\{A,B,C\}	3
$\{A, D\}$	4	\{A,B, D$\}$	DB	$\{A, B, D\}$	2
\{A,E\}	2	\{A,C,D\}	scan	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$	2
$\{\mathrm{B}, \mathrm{C}\}$	6	$\{A, C, D\}$ $\{A, C, E\}$ $A, D, E\}$		$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$	1
$\{\mathrm{B}, \mathrm{D}\}$	3	$\{A, C, C, E\}$ $\{A, D, E\}$ 何		\{A,D,E\}	2
\{C,D\}	3	$\{A, D, E\}$ $\{B, C, D\}$		$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$	2
\{C,E\}	2	$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$ $\{\mathrm{C}, \mathrm{D}, \mathrm{E}\}$		\{C,D,E\}	1
\{D,E\}	2				

Prune infrequent candidates in C_{3}

L_{2}		C_{3}	C_{3}			L_{3}	
itemsets	sup	itemsets					
$\{A, B\}$	5	\{A,B,C\}		itemsets	sup		
$\{\mathrm{A}, \mathrm{C}\}$	4	$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	$3{ }^{\text {rd }}$	\{A,B,C\}	3	itemsets	sup
$\{A, D\}$	4	$\frac{\{A, B, D\}}{}$	DB	$\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$	2	$\{A, B, C\}$	3
\{A,E\}	2	$\{A, C, D\}$	scan	\{A,C,D\}	2	$\{A, B, D\}$	2
$\{B, C\}$	6	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$		\{A,		\{A,C,D\}	2
\{B,D\}	3	$\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$		\{A,D,E\}	2	\{A,D,E\}	2
\{C,D\}	3	$\{\mathrm{A}, \mathrm{C}, \mathrm{D}\}$		\{B,C,D\}	2	\{B,C,D\}	2
\{C,E\}	2	\{C,D,E\}		[6, $\mathrm{B}, \mathrm{E}\}$			
\{D,E\}	2						

- $\{A, C, E\}$ and $\{C, D, E\}$ are actually infrequent - They are discarded from C_{3}

Generate candidates from L_{3}

Apply Apriori principle on C_{4}

- Check if $\{A, C, D\}$ and $\{B, C, D\}$ belong to L_{3}
- L_{3} contains all 3-itemset subsets of $\{A, B, C, D\}$
- $\{A, B, C, D\}$ is potentially frequent

Count support for candidates in C_{4}

Prune infrequent candidates in C_{4}

- $\{A, B, C, D\}$ is actually infrequent - $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is discarded from C_{4}

Final set of frequent itemsets

Example DB

TID	Items
1	$\{\mathrm{~A}, \mathrm{~B}\}$
2	$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
3	$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
4	$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$
5	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
6	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$
7	$\{\mathrm{~B}, \mathrm{C}\}$
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$
9	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$
10	$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$

minsup>1
$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

L_{2}	
itemsets	sup
$\{A, B\}$	5
$\{A, C\}$	4
$\{A, D\}$	4
$\{A, E\}$	2
$\{B, C\}$	6
$\{B, D\}$	3
$\{C, D\}$	3
$\{C, E\}$	2
$\{D, E\}$	2

Counting Support of Candidates

- Scan transaction database to count support of each itemset
- total number of candidates may be large
- one transaction may contain many candidates
- Approach [Agr94]
- candidate itemsets are stored in a hash-tree
- leaf node of hash-tree contains a list of itemsets and counts
- interior node contains a hash table
- subset function finds all candidates contained in a transaction
- match transaction subsets to candidates in hash tree

Performance Issues in Apriori

- Candidate generation
- Candidate sets may be huge
- 2-itemset candidate generation is the most critical step
- extracting long frequent intemsets requires generating all frequent subsets
- Multiple database scans
- $n+1$ scans when longest frequent pattern length is n

Factors Affecting Performance

- Minimum support threshold
- lower support threshold increases number of frequent itemsets
- larger number of candidates
- larger (max) length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases in dense data sets
- may increase max length of frequent itemsets and traversals of hash tree
- number of subsets in a transaction increases with its width

Improving Apriori Efficiency

- Hash-based itemset counting [Yu95]
- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction [Yu95]
- A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning [Sav96]
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB

Improving Apriori Efficiency

- Sampling [Toi96]
- mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic Itemset Counting [Motw98]
- add new candidate itemsets only when all of their subsets are estimated to be frequent

FP-growth Algorithm [Han00]

- Exploits a main memory compressed representation of the database, the FP-tree
- high compression for dense data distributions
- less so for sparse data distributions
- complete representation for frequent pattern mining
- enforces support constraint
- Frequent pattern mining by means of FP-growth
- recursive visit of FP-tree
- applies divide-and-conquer approach
- decomposes mining task into smaller subtasks
- Only two database scans
- count item supports + build FP-tree

FP-tree construction

Example DB

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order Header Table

Item	sup
$\{\mathrm{B}\}$	8
$\{\{\mathrm{~A}\}$	7
$\{\mathrm{C}\}$	7
$\{\mathrm{D}\}$	5
$\{\mathrm{E}\}$	3

FP-tree construction

Example DB

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, C, D, E\}$
4	$\{A, D, E\}$
5	$\{A, B, C\}$
6	$\{A, B, C, D\}$
7	$\{B, C\}$
8	$\{A, B, C\}$
9	$\{A, B, D\}$
10	$\{B, C, E\}$

minsup>1

- (1) Count item support and prune items below minsup threshold
- (2) Build Header Table by sorting items in decreasing support order
- (3) Create FP-tree

For each transaction t in DB

- order transaction t items in decreasing support order
- same order as Header Table
- insert transaction t in FP-tree
- use existing path for common prefix
- create new branch when path becomes different

FP-tree construction

Transaction Sorted transaction

TID	Items			
1	$\{A, B\}$	\square	TID	Items
:---:	:---:			
1	$\{B, A\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{\mathrm{E}\}$	3

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

FP-tree construction

Transaction Sorted transaction

TID	Items			
2	$\{B, C, D\}$	\square	TID	Items
:---:	:---:			
2	$\{B, C, D\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

FP-tree construction

Transaction Sorted transaction

TID	Items			
3	$\{A, C, D, E\}$	\triangleleft	TID	Items
:---:	:---:			
3	$\{A, C, D, E\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
4	$\{A, D, E\}$	\square	TID	Items
:---:	:---:			
4	$\{A, D, E\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

E:1

FP-tree construction

Transaction Sorted transaction

TID	Items			
5	$\{A, B, C\}$	\checkmark	TID	Items
:---:	:---:			
5	$\{B, A, C\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
6	$\{A, B, C, D\}$	\triangleleft	TID	Items
:---:	:---:			
6	$\{B, A, C, D\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
7	$\{B, C\}$	\square	TID	Items
:---:	:---:			
7	$\{B, C\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
8	$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$	\square	TID	Items
:---:	:---:			
8	$\{\mathrm{~B}, \mathrm{~A}, \mathrm{C}\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
9	$\{A, B, D\}$	\square	TID	Items
:---:	:---:			
9	$\{B, A, D\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

FP-tree construction

Transaction Sorted transaction

TID	Items			
10	$\{B, C, E\}$	\square	TID	Items
---:	:---:			
10	$\{B, C, E\}$			

Header Table

Item	sup
$\{B\}$	8
$\{A\}$	7
$\{C\}$	7
$\{D\}$	5
$\{E\}$	3

Final FP-tree

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$
Item pointers are used to assist frequent itemset generation

FP-growth Algorithm

- Scan Header Table from lowest support item up
- For each item i in Header Table extract frequent itemsets including item i and items preceding it in Header Table
- (1) build Conditional Pattern Base for item i (i-CPB)
- Select prefix-paths of item i from FP-tree
- (2) recursive invocation of FP-growth on i-CPB

Example

- Consider item D and extract frequent itemsets including
- D and supported combinations of items A, B, C

Header Table

Conditional Pattern Base of D

- (1) Build D-CPB
- Select prefix-paths of item D from FP-tree

Conditional Pattern Base of D

Header Table

\{ \} FP-tree

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Conditional Pattern Base of D

Header Table

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Conditional Pattern Base of D

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Conditional Pattern Base of D

Header Table

$D_{\mathbb{M}}^{B} G$

Conditional Pattern Base of D

Header Table

\{ \} FP-tree

Conditional Pattern Base of D

- (1) Build D-CPB
- Select prefix-paths of item D from FP-tree

- (2) Recursive invocation of FP-growth on D-CPB $\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Conditional Pattern Base of DC

- (1) Build DC-CPB
- Select prefix-paths of item C from D-conditional FP-tree

Conditional Pattern Base of DC

- (1) Build DC-CPB
- Select prefix-paths of item C from D-conditional FP-tree

- (2) Recursive invocation of FP-growth on DC-CPB

Conditional Pattern Base of DCB

- (1) Build DCB-CPB
- Select prefix-paths of item B from DC-conditional FP-tree

DC-CPB	
Items	sup
$\{A, B\}$	1
$\{A\}$	1
$\{B\}$	1

$D_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Conditional Pattern Base of DCB

- (1) Build DCB-CPB
- Select prefix-paths of item B from DC-conditional FP-tree

- Item A is infrequent in DCB-CPB
- A is removed from DCB-CPB
- DCB-CPB is empty

- (2) The search backtracks to DC-CBP

Conditional Pattern Base of DCA

- (1) Build DCA-CPB
- Select prefix-paths of item A from DC-conditional FP-tree

- (2) The search backtracks to D-CBP

Conditional Pattern Base of DB

- (1) Build DB-CPB
- Select prefix-paths of item B from D-conditional FP-tree

$D_{\mathbb{N}}^{B} G$

Conditional Pattern Base of DB

- (1) Build DB-CPB
- Select prefix-paths of item B from D-conditional FP-tree

- (2) Recursive invocation of FP-growth on DB-CPB

Conditional Pattern Base of DBA

- (1) Build DBA-CPB
- Select prefix-paths of item A from DB-conditional FP-tree

- (2) The search backtracks to D-CBP

Conditional Pattern Base of DA

- (1) Build DA-CPB
- Select prefix-paths of item A from D-conditional FP-tree

Frequent itemsets with prefix D

- Frequent itemsets including D and supported combinations of items B,A,C

Example DB

Other approaches

- Many other approaches to frequent itemset extraction
- May exploit a different database representation
- represent the tidset of each item [Zak00]

Horizontal
Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	B

Vertical Data Layout

A	B	C	D	E
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

Compact Representations

- Some itemsets are redundant because they have identical support as their supersets

- Number of frequent itemsets $=3 \times \sum_{k=1}^{10}\binom{1}{k}$
- A compact representation is needed

Maximal Frequent Itemset

An itemset is frequent maximal if none of its immediate supersets is frequent

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

itemset	sup
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

itemset	sup
$\{A, B, C\}$	2
$\{A, B, D\}$	3
$\{A, C, D\}$	2
$\{B, C, D\}$	3
$\{A, B, C, D\}$	2

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Maximal vs Closed Frequent Itemsets

79
From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Maximal vs Closed Itemsets

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Effect of Support Threshold

- Selection of the appropriate minsup threshold is not obvious
- If minsup is too high
- itemsets including rare but interesting items may be lost
- example: pieces of jewellery (or other expensive products)
- If minsup is too low
- it may become computationally very expensive
- the number of frequent itemsets becomes very large

Interestingness Measures

- A large number of pattern may be extracted
- rank patterns by their interestingness
- Objective measures
- rank patterns based on statistics computed from data
- initial framework [Agr94] only considered support and confidence
- other statistical measures available
- Subjective measures
- rank patterns according to user interpretation [Silb98]
- interesting if it contradicts the expectation of a user
- interesting if it is actionable

Confidence measure: always reliable?

- 5000 high school students are given
- 3750 eat cereals
- 3000 play basket
- 2000 eat cereals and play basket
- Rule

> play basket \Rightarrow eat cereals
> sup $=40 \%$, conf $=66,7 \%$
is misleading because eat cereals has sup 75\% (>66,7\%)

- Problem caused by high frequency of rule head
- negative correlation

	basket	not basket	total
cereals	2000	1750	3750
not cereals	1000	250	1250
total	3000	2000	5000

$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}} \mathrm{G}$

Correlation or lift

$$
r: A \Rightarrow B
$$

Correlation $=\frac{P(A, B)}{P(A) P(B)}=\frac{\operatorname{conf}(\mathrm{r})}{\sup (\mathrm{B})}$

- Statistical independence
- Correlation = 1
- Positive correlation
- Correlation > 1
- Negative correlation
- Correlation < 1
$D_{\mathbb{N}}^{B} G$

Example

- Association rule
play basket \Rightarrow eat cereals
has corr $=0.89$
- negative correlation
- but rule
play basket \Rightarrow not (eat cereals)
has corr $=1,34$
$\mathrm{D}_{\mathrm{M}}^{\mathrm{B}_{\mathrm{M}}} \mathrm{G}$

	\#	Measure	Formula
	1	ϕ-coefficient	$\frac{P(A, B)-P(A) P(B)}{\sqrt{P(A) P(B)(1-P(A))(1-P(B))}}$
	2		$\underline{j}_{j} \max _{k} P\left(A_{j}, B_{k}\right)+\sum_{k} \max _{j} P\left(A_{j}, B_{k}\right)-\max _{j} P\left(A_{j}\right)-\max _{k} P\left(B_{k}\right)$
	3	Odds ratio (α)	$\underline{P(A, B) P(\bar{A}, \bar{B})}$ - ${ }^{\text {a }}$
	4		$\begin{aligned} & P(A, \bar{B}) P(\bar{A}, B) \\ & P(A, B) P(\bar{B})-P(A, \bar{B}) P(\bar{A}, B) \\ & P=\underline{\alpha} \end{aligned}$
	4	Yule's Q	$\frac{P(A)}{P(A, B) P(\overline{A B})+P(A, \bar{B}) P(\bar{A}, B)}=\frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	
	6	Kappa (κ)	$\frac{P(A, B)+P(\bar{A}, \bar{B})-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A) P(B)-P(A) P()^{(1)}}$
			$\begin{aligned} & 1-P(A) P(B)-P(\bar{A}) P(\bar{B})_{\left.A_{i}, B_{j}\right)} \\ & \left.\sum_{i} \sum_{j} P\left(A_{i}, B_{j}\right) \log \frac{P\left(A_{i}\right) P\left(B_{j}\right)}{P(}\right) \end{aligned}$
	7	Mutual Information (M)	$\overline{\min \left(-\sum_{i}{ }^{P}\left(A_{i}\right) \log P\left(A_{i}\right),-\sum_{j}{ }^{P}\left(B_{j}\right) \log P^{\left(B_{j}\right)}\right)}$
	8	J-Measure (J)	$\begin{array}{r} \max \left(P(A, B) \log \left(\frac{P(B \mid A)}{P(B)}\right)+P(A \bar{B}) \log \left(\frac{P(\bar{B} \mid A)}{P(\bar{B})}\right),\right. \\ \left.P(A, B) \log \left(\frac{(A \mid B)}{P(A)}\right)+P(\bar{A} B) \log \left(\frac{P(\bar{A} \mid B)}{P(\bar{A})}\right)\right) \end{array}$
	9	Gini index (G)	$\begin{aligned} & \max \left(P(A)\left[P(B \mid A)^{\mathrm{a}}+P(\bar{B} \mid A)^{\mathrm{a}}\right]+P(\bar{A})\left[P(B \mid \bar{A})^{\mathrm{a}}+P(\bar{B} \mid \bar{A})^{\mathrm{a}}\right]\right. \\ & -P(B)^{\mathrm{a}}-P(\bar{B})^{\mathrm{a}} \\ & P(B)\left[P(A \mid B)^{\mathrm{a}}+P(\bar{A} \mid B)^{\mathrm{a}}\right]+P(\bar{B})\left[P(A \mid \bar{B})^{\mathrm{a}}+P(\bar{A} \mid \bar{B})^{\mathrm{a}}\right] \\ & \left.\quad-P(A)^{\mathrm{a}}-P(\bar{A})^{\mathrm{a}}\right) \end{aligned}$
	10	Support (s)	$P(A, B)$
	11	Confidence (c)	$\max (P(B \mid A), P(A \mid B))$
	12	Laplace (L)	$\max \left(\frac{N P(A, B)+1}{N P(A)+a}, \frac{N P(A, B)+1}{N P(B)+a}\right)$
	13	Conviction (V)	$\max \left(\frac{P(A) P(\bar{B})}{P(A \bar{B})}, \frac{P(B) P(\bar{A})}{P(B \bar{A})}\right)$
	14	Interest (I)	$\frac{P(A, B)}{P(A) P(B)}$
	15	$\text { cosine }(I S)$	$\frac{P(A, B)}{\sqrt{P(A) P(B)}}$
	16	Piatetsky-Shapiro's (PS)	$P(A, B)-P(A) P(B)$
	17	Certainty factor (F)	$\max \left(\frac{P(B \mid A)-P(B)}{1-P(B)}, \frac{P(A \mid B)-P(A)}{1-P(A)}\right)$
	18	Added Value ($A V$)	$\max (P(B \mid A)-P(B), P(A \mid B)-P(A))$
	19	Collective strength (S)	$\frac{P(A, B)+P(\overline{A B})}{P(A) P(B)+P(\bar{A}) P(\bar{B})} \times \frac{1-P(A) P(B)-P(\bar{A}) P(\bar{B})}{1-P(A, B)-P(\overline{A B})}$
)	20	Jaccard (弓)	
	21	Klosgen (K)	$\overline{P(A)+P(B)-P(A, B)}$ $\sqrt{P(A, B)} \max (P(B \mid A)-P(B), P(A \mid B)-P(A))$

