»
£
0
wid
7
>
()]
)
=
0
£
0
o
T
c
=
=
Q
7
S
a
S
wid
=
(@]

Buffer manager

SQL INSTRUCTION

l

OPTIMIZER
7'}

A CONCURRENCY CONTROL
MANAGEMENT OF ACCESS

METHODS
(BUFFER MANAGER RELIABILITY MANAGEMENT
I —
Retrieve block of Data
Index Files ¢
System DATABASE

Data Files «—— Ccatalog

a == -
= ~
- o e

Buffer Manager

>~ Buffer Manager

® [t manages page transfer from disk to main
memory and vice versa

® [t is in charge of managing the DBMS buffer

> Efficient buffer management is a key issue for
DBMS performance

e .’ -
= - —
2 /

DBMS buffer

>~ Buffer

® A large main memory block

® Pre-allocated to the DBMS

® Shared among executing transactions
2>~ Buffer organization

® Memory is organized in pages

® The size of a page depends on the size of the
operating system I/O block

22 Memory management strategies

® Data locality
® Data referenced recently is likely to be referenced
again
® Empirical law: 20-80
® 20% of data is read/written by 80% of transactions

|\\

>~ The Buffer Manager keeps additional “snapshot”
information on the current content of the buffer

>~ For each buffer page

® Physical location of the page on disk
® File identifier
® Block Number
® State variables
® Count of the number of transactions using the page
® Dirty bit which is set if the page has been modified

fix

|

unfix set dirty force

| |

flush ——

BUFFER
X Z

L3
\

PAGE

BUFFER
MANAGER

FILE SYSTEM

A

A 4

CONCURRENCY CONTROL

>~ Provides the following primitives to access
methods to load pages from disk and vice versa

® Fix

® Unfix

® Force

® Set dirty
® Flush

>~ Requires shared access permission from the
concurrency control manager

Fix primitive

>~ Used by transactions to require access to a disk
page
® The page is loaded into the buffer
® A pointer to a page into the buffer is returned to the
requesting transaction
>~ At the end of the Fix primitive, the requested page
® Is in the buffer
® [s valid (i.e, allocated to an active transaction)
® The Count state variable of the page is incremented by 1

>~ The Fix primitive requires an I/O operation only if
the requested page is not yet in the buffer

>~ The Fix primitive looks for the requested page
among those already in the buffer
> If it finds the requested page

® [t returns to the requesting transaction the
address of the page in the buffer

® It happens often because of data locality

10

> If it does not find the requested page
® A page is searched into the buffer where the new
page can be loaded
® First, among free pages

® Next, among pages which are not free, but with
Count=0

® called victim pages
® may still be locked

® If the selected page has Dirty=1
® it is synchronously written on disk

® The new page is loaded in the buffer and its
address is returned to the requesting transaction

11

e .’ -
= - —
2 /

Unfix primitive

> It tells the buffer manager that the transaction is
no longer using the page

® The state variable Count of the page is
decremented by 1

12

a == -
e ~
- - -

dirty primitive

> It tells the buffer manager that the page has
been modified by the running transaction

® The dirty state variable of the page is set to 1

13

> It requires a synchronous transfer of the page to
disk

® The requesting transaction is suspended until the
Force primitive is executed

® [t always entails a disk write

14

> It transfers pages to disk, independently of
transaction requests

® [t is internal to the Buffer Manager

® [t runs when the CPU is not fully loaded
® In CPU idle time

® [t downloads pages which
® are not valid (state variable Count=0)
® are not accessed since a longer time

15

-

= - ’am—:‘h- ‘._ = =

Buffer Manager writing strategies

> Steal

® The Buffer Manager is allowed to select a locked page
with Count=0 as victim

® The page belongs to an active transaction

> No steal

® The Buffer Manager is not allowed to select pages
belonging to active transactions as victims
>~ The steal policy writes on disk dirty pages
belonging to uncommitted transactions

® In case of failure these changes must be undone
® same operations as in transaction rollback

Buffer Manager wr|t|ng strategies

2 Force

® All active pages of a transaction are synchronously
written on disk by the Buffer Manager during the
commit operation

2> No Force

® Pages are written on disk asynchronously by the
Buffer Manager

® by means of the Flush primitive

>~ Pages belonging to a committed transaction may
be written on disk after commit

® In case of failure these changes must be redone

17

Buffer Manager wr|t|ng strategies

2> Typical usage is steal/no force, because of its
efficiency

® No force provides better I/O performance

® Steal may be mandatory for queries accessing a
very large number of pages

18

>~ The Buffer Manager exploits services provided by
the file system

® Creation/deletion of a file
® Open/close of a file
® Read

® It provides a direct access to a block in a file

® [t requires
® File identifier
® Block number
® Buffer page where to load data in memory

19

® Sequential Read

® It provides sequential access to a fixed number of
blocks in a file

® [t requires
® File identifier
® Starting block
® Count of the number of blocks to be read
® Starting buffer page where to load data in memory
® Write and Sequential Write

® Analogous for writing data
® Directory management functions

