
DB
MG

Database Management Systems

Concurrency Control

1

DB
MG

2

DBMS Architecture

OPTIMIZER

MANAGEMENT OF ACCESS

METHODS

BUFFER MANAGER

CONCURRENCY CONTROL

RELIABILITY MANAGEMENT

SQL INSTRUCTION

System

Catalog

Index Files

Data Files

DATABASEDATABASE

DB
MG

3

Concurrency control

The workload of operational DBMSs is measured
in tps, i.e., transactions per second

≈ 10-103 for banking applications and flight
reservations

Concurrency control provides concurrent access
to data

It increases DBMS efficiency by

maximizing the number of transactions per second
(throughput)

minimizing response time

3

DB
MG

4

Elementary I/O operations

Elementary operations are

Read of a single data object x

r(x)

Write of a single data object x

w(x)

They may require reading from disk or writing to
disk an entire page

4

DB
MG

5

Scheduler

The scheduler

is a block of the concurrency control manager

is in charge of deciding if and when read/write
requests can be satisfied

The absence of a scheduler may cause
correctness problems

also called anomalies

5

DB
MG

6

Lost update

time

The correct value is x=4

The effect of transaction T2 is lost because both
transactions read the same initial value

6

Transaction T1 Transaction T2

bot
r1(x)

x= x+1
bot
r2(x)

x=x+1
w2(x)

commit
w1(x)

commit

x=2
x=3
x=3

x=3

x=2
x=3

DB
MG

7

Dirty read

time

7

Transaction T1 Transaction T2

bot
r1(x)

x= x+1
w1(x)

bot
r2(x)

x=x+1
w2(x)

commit
abort

Transaction T2 reads the value of X in an intermediate
state which never becomes stable (permanent)

cascade rollback

x=2
x=3
x=3

x=3
x=4
x=4

DB
MG

8

Inconsistent read

time

8

Transaction T1 Transaction T2

bot
r1(x)

bot
r2(x)

x=x+1
w2(x)

commit

r1(x)
commit

x=2

x=2
x=3
x=3

x=3

Transaction T1 reads x twice

x has a different value each time

8

DB
MG

9

Ghost update (a)

time

Transaction T1 Transaction T2

bot
r1(x)

bot
r2(y)

r1(z)
total = x + y + z

commit

r1(y)

y = y -100
r2(z)

z = z + 100
w2(y)
w2(z)

commit

x=400

y=300
y=300

y=200
z=300
z=400
y=200
z=400

z=400

total=1100

The correct value is total = 400+200+400=1000
9

DB
MG

10

Ghost update (a)

Transaction T1 only partially observes the effect
of transaction T2

1010

DB
MG

11

Ghost update (b)

time

Transaction T1 Transaction T2

bot
read the salary of all

employees in
department x and

compute AVG salary

read the salary of all
employees in

department x and
compute AVG salary

commit

bot
insert a new employee

in department x
commit

DB
MG

Ghost update (b)

The insert operation is the ghost update

Problem

The data is not yet in the database before the
insert

12

DB
MG

Database Management Systems

Theory of Concurrency Control

13

DB
MG

14

Schedule

The transaction is a sequence of read and write
operations characterized by the same TID
(Transaction Identifier)

r1(x) r1(y) w1(x) w1(y)

The schedule is a sequence of read/write
operations presented by concurrent transactions

r1(z)r2(z)w1(y)w2(z)

Operations in the schedule appear in the arrival
order of requests

14

DB
MG

Scheduler

Concurrency control accepts or rejects schedules
to avoid anomalies

The scheduler has to accept or reject operation
execution without knowing the outcome of the
transactions

abort/commit

1515

DB
MG

Commit projection

Commit projection is a simplifying hypothesis

The schedule only contains transactions performing
commit

The dirty read anomaly is not addressed

This hypothesis will be removed later

16

DB
MG

Serial schedule

In a serial schedule, the actions of each
transaction appear in sequence, without
interleaved actions belonging to different
transactions

Example

T0

r0(x) r0(y) w0(x) r2 (x) r2(y) r2(z) r1(y) r1(x) w1(y)

T2 T1

1717

DB
MG

18

Serializable schedule

An arbitrary schedule Si (commit projection) is
correct when it yields the same result as an
arbitrary serial schedule Sj of the same
transactions

Si is serializable

Si is equivalent to an arbitrary serial schedule of
the same transactions

18

DB
MG

19

Equivalence between schedules

Different equivalence classes between two
schedules

View equivalence

Conflict equivalence

2 phase locking

Timestamp equivalence

Each equivalence class

detects a set of acceptable schedules

is characterized by a different complexity in
detecting equivalence

19

DB
MG

20

View equivalence

Definitions

reads-from

ri(x) reads-from wj(x) when

wj(x) precedes ri(x) and i ≠ j

there is no other wk(x) between them

final write

wi(x) is a final write if it is the last write of x
appearing in the schedule

Two schedules are view equivalent if they have

the same reads-from set

the same final write set

DB
MG

View serializable schedule

A schedule is view serializable if it is view
equivalent to an arbitrary serial schedule of the
same transactions

VSR: schedules which are view serializable

Example

S1 is view serializable because it is view
equivalent to S2

S1 = w0(x) r2(x) r1(x) w2(x) w2(z)

S2 = w0(x) r1(x) r2(x) w2(x) w2(z)

2121

DB
MG

22

View equivalence

S3 is not view equivalent to S2

the reads-from sets are different

S3 is view serializable because it is view
equivalent to S4

22

S3 = w0(x) r2(x) w2(x) r1(x) w2(z)

S4 = w0(x) r2(x) w2(x) w2 (z) r1(x)

DB
MG

23

Lost update anomaly

Corresponding schedule

23

S = r1(x) r2(x) w2(x) w1(x)

Transaction T1 Transaction T2

bot
r1(x)

x= x+1
bot
r2(x)

x=x+1
w2(x)

commit
w1(x)

commit

DB
MG

24

Lost update anomaly

Is this schedule serializable?

Only two possible serial schedules

S is not view equivalent to any serial schedule

not serializable

should be rejected
24

S = r1(x) r2(x) w2(x) w1(x)

S1 = r1(x) w1(x) r2(x) w2(x)

S2 = r2(x) w2(x) r1(x) w1(x)

DB
MG

25

Inconsistent read anomaly

Corresponding schedule

25

S = r1(x) r2(x) w2(x) r1(x)

Transaction T1 Transaction T2

bot
r1(x)

bot
r2(x)

x=x+1
w2(x)

commit

r1(x)
commit

DB
MG

26

Inconsistent read anomaly

Is this schedule serializable?

Only two possible serial schedules

S is not view equivalent to any serial schedule

not serializable

should be rejected
26

S = r1(x) r2(x) w2(x) r1(x)

S1 = r1(x) r1(x) r2(x) w2(x)

S2 = r2(x) w2(x) r1(x) r1(x)

DB
MG

27

Ghost Update (a)

27S = r1(x) r2(y) r1(y) r2(z) w2(y) w2(z) r1(z)

Transaction T1 Transaction T2

bot
r1(x)

bot
r2(y)

r1(z)
total = x + y + z

commit

r1(y)

y = y -100
r2(z)

z = z + 100
w2(y)
w2(z)

commit

DB
MG

28

Ghost Update (a)

Is this schedule serializable?

Only two possible serial schedules

S is not view equivalent to any serial schedule

28

S = r1(x) r2(y) r1(y) r2(z) w2(y) w2(z) r1(z)

S1 = r1(x) r1(y) r1(z) r2(y) r2(z) w2(y) w2(z)

S2 = r2(y) r2(z) w2(y) w2(z) r1(x) r1(y) r1(z)

DB
MG

29

Checking view serializability

Detecting view equivalence to a given schedule
has linear complexity

Detecting view equivalence to an arbitrary serial
schedule is NP complete

not feasible in real systems

Less accurate but faster techniques should be
considered

29

DB
MG

30

Conflict equivalence

Conflicting actions

Action Ai is in conflict with action Aj (i ≠ j) if both
actions operate on the same object and at least
one of them is a write

Read-Write conflicts (RW or WR)

Write-Write conflicts (WW)

Two schedules are conflict equivalent if

they have the same conflict set

each conflict pair is in the same order in both
schedules

30

DB
MG

31

Conflict serializable schedule

A schedule is conflict serializable if it is equivalent
to an arbitrary serial schedule of the same
transactions

CSR: schedules which are conflict serializable

Example

S = w0(x) r1(x) w0(z) r1(z) r2(x) r3(z) w3(z) w1(x)

Ss= w0(x) w0(z) r2(x) r1(x) r1(z) w1(x) r3(z) w3(z)

DB
MG

32

Conflict serializable schedule

Example

Schedule S is conflict serializable

S = w0(x) r1(x) w0(z) r1(z) r2(x) r3(z) w3(z) w1(x)

Ss= w0(x) w0(z) r2(x) r1(x) r1(z) w1(x) r3(z) w3(z)

DB
MG

Detecting conflict serializability

To detect conflict serializability it is possible to
exploit the conflict graph

Conflict graph

a node for each transaction

an edge Ti Tj if

there exists at least a conflict between an action Ai

in Ti and Aj in Tj

Ai precedes Aj

If the conflict graph is acyclic the schedule is CSR

Checking graph cyclicity is linear in the size of the
graph

3333

DB
MG 34

Example of conflict graph

T0

T2

T3

T1

T2

S = w0(x) r1(x) w0(z) r1(z) r2(x) r3(z) w3(z) w1(x)

DB
MG 35

Example of conflict graph

S is CSR (no cycles)

T0

T2

T3

T1

T2

S = w0(x) r1(x) w0(z) r1(z) r2(x) r3(z) w3(z) w1(x)

DB
MG

36

Detecting conflict serializability

Real system settings

100 tps (transactions per second)

each transaction accesses ≈ 10 pages

each transaction lasts ≈ 5s

The conflict graph is characterized by 500 nodes

100 tps * 5 seconds

Accesses to be checked for conflicts

500 nodes * 10 page accessed ≈ 5000 accesses

At each access

the graph should be updated

cycle absence should be checked
36

DB
MG

VSR versus CRS

CSR schedules are a subset of VSR schedules

CSR VSR

This schedule is VSR
but not CSR

3737

DB
MG

Database Management Systems

2 Phase Locking

38

DB
MG

Locking

A lock is a block on a resource which may
prevent access to others

Lock operation

Lock

Read lock (R-Lock)

Write lock (W-Lock)

Unlock

Each read operation

is preceded by a request of R-Lock

is followed by a request of unlock

Similarly for write operation and W-Lock
3939

DB
MG

Locking

The read lock is shared among different
transactions

The write lock is exclusive

it is not compatible with any other lock (R/W) on
the same data

Lock escalation

request of R-Lock followed by W-Lock on the same
data

4040

DB
MG

41

Lock manager

The scheduler becomes a lock manager

It receives transaction requests and grants locks
based on locks already granted to other
transactions

When the lock request is granted

The corresponding resource is acquired by the
requesting transaction

When the transaction performs unlock, the resource
becomes again available

When the lock is not granted

The requesting transaction is put in a waiting state

Wait terminates when the resource is unlocked and
becomes available

41

DB
MG

42

Lock manager

The lock manager exploits

the information in the lock table to decide if a
given lock can be granted to a transaction

the conflict table to manage lock conflicts

42

DB
MG

43

Conflict table

Request Resource State

Free R-Locked W-Locked

R-Lock

W-Lock

Unlock

43

DB
MG

44

Conflict table

Request Resource State

Free R-Locked W-Locked

R-Lock Ok/R-Locked Ok/R-Locked No/W-Locked

W-Lock Ok/W-Locked No/R-Locked No/W-Locked

Unlock Error
Ok/It depends
(free if no other
R-Locked)

Ok/Free

44

DB
MG

Read locks

Read locks are shared

Other transactions may lock the same resource

A counter is used to count the number of
transactions currently holding the R-Lock

Free when count = 0

4646

DB
MG

47

Lock manager

The lock manager exploits

the information in the lock table to decide if a
given lock can be granted to a transaction

stored in main memory

for each data object

2 bits to represent the 3 possible object states (free,
r_locked, w_locked)

a counter to count the number of waiting transactions

47

DB
MG

2 Phase Locking

Exploited by most commercial DBMS

It is characterized by two phases

Growing phase

needed locks are acquired

Shrinking phase

all locks are released

4848

Growing phase Shrinking phase

Locked
resources

Time

DB
MG

49

2 Phase Locking

2 Phase Locking guarantees serializability

A transaction cannot acquire a new lock after having
released any lock

49

CSR
VSR

This schedule is not
accepted by 2PL but

it is serializable

2PL

DB
MG

Example

The schedule is CSR but not 2PL

50

S = r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)

T1

T3T2

T1 releases
the lock on x

T1 should acquire
a new lock on y

DB
MG

51

Ghost update (a)

51

Transactions

bot
r_lock1(x)

r1(x)

r_lock1(y)
r1(y)

T1 T2

Resources

bot
r_lock2(y)

r2(y)

wait

r_lock2(z)
r2(z)

w_lock2(y)

x y z
free

1: read
free

2: read

free

1,2: read

2: read

1,2: read

r_lock1(z)
r1(z)

DB
MG

52

Ghost update (a)

52

Transactions

commit
unlock1(x)
unlock1(y)

unlock1(z)

T1 T2

Resources

w2(y)
w_lock2(z)

wait

w2(z)
commit

unlock2(y)
unlock2(z)

x y z

free

free

2: write

free

2: write

wait

DB
MG

Strict 2 Phase Locking

Strict 2 Phase Locking allows dropping the
commit projection hypothesis

A transaction locks may be released only at the
end of the transaction

After COMMIT/ROLLBACK

After the end of the transaction, data is stable

It avoids the dirty read anomaly

5353

DB
MG

54

Lock Manager service interface

Primitives
R-Lock (T, x, ErrorCode, TimeOut)

W-Lock (T, x, ErrorCode, TimeOut)

UnLock (T, x)

Parameters
T: Transaction ID of the requesting transaction

x: requested resource

ErrorCode: return parameter
Ok

Not Ok (request not satisfied)

TimeOut
Maximum time for which the transaction is willing to wait

54

DB
MG

55

Techniques to manage locking

A transaction requests a resource x

If the request can be satisfied

The lock manager modifies the state of resource x
in its internal tables

It returns control to the requesting transaction

The processing delay is very small

55

DB
MG

56

Techniques to manage locking

If the request cannot be satisfied immediately

The requesting transaction is inserted in a waiting
queue and suspended

When the resource becomes available

the first transaction (process) in the waiting queue is
resumed and is granted the lock on the resource

Probability of a conflict ≈ (K×M)/N

K is the number of active transactions

M is the average number of objects accessed by a
transaction

N is the number of objects in the database

DB
MG

57

Techniques to manage locking

When a timeout expires while a transaction is still
waiting, the lock manager

extracts the waiting transaction from the queue

resumes it

returns a not ok error code

The requesting transaction may

perform rollback (and possibly restart)

request again the same lock after some time

without releasing locks on other acquired resources

57

DB
MG

Database Management Systems

Hierarchical Locking

58

DB
MG

Hierarchical locking

Table locks can be acquired at different
granularity levels

Table

Group of tuples (fragment)

Physical partitioning criteria

e.g., data page

Logical partitioning criteria

e.g. tuples satisfying a given property

Single tuple

Single field in a tuple

5959

DB
MG

Hierarchical locking

DB

Table1 Table2 Tablen

Fragment1 Fragment2 Fragmentm

Tuple1 Tuple2

Field1 Fieldk

60

DB
MG

61

Hierarchical locking

Hierarchical locking is an extension of traditional
locking

It allows a transaction to request a lock at the
appropriate level of the hierarchy

It is characterized by a larger set of locking
primitives

61

DB
MG

Locking primitives

Shared Lock (SL)

eXclusive Lock (XL)

Intention of Shared Lock (ISL)

It shows the intention of shared locking on an
object which is in a lower node in the hierarchy

i.e., a descendant of the current node

Intention of eXclusive Lock (IXL)

Analogous to ISL, but for exclusive lock

6262

DB
MG

Locking primitives

Shared lock and Intention of eXclusive Lock
(SIXL)

Shared lock of the current object and intention of
exclusive lock for one or more objects in a
descendant node

6363

DB
MG

64

Request protocol

1. Locks are always requested starting from the
tree root and going down the tree

2. Locks are released starting from the blocked
node of smaller granularity and going up the
tree

3. To request a SL or an ISL on a given node, a
transaction must own an ISL (or IXL) on its
parent node in the tree

4. To request an XL, IXL or SIXL on a given node, a
transaction must own an IXL or SIXL on its
parent node in the tree

64

DB
MG

65

Compatibility matrix

Resource State

Request ISL IXL SL SIXL XL

ISL

IXL

SL

SIXL

XL
65

DB
MG

66

Compatibility matrix

Resource State

Request ISL IXL SL SIXL XL

ISL Ok Ok Ok Ok No

IXL Ok Ok No No No

SL Ok No Ok No No

SIXL Ok No No No No

XL No No No No No
66

DB
MG

67

Precedence graph for locks

XL

SIXL

SL IXL

ISL

67

DB
MG

68

Selection of lock granularity

It depends on the application type

if it performs localized reads or updates of few
objects

low levels in the hierarchy (detailed granularity)

if it performs massive reads or updates

high levels in the hierarchy (rough granularity)

Effect of lock granularity

if it is too coarse, it reduces concurrency

high likeliness of conflicts

if it is too fine, it forces a significant overhead on
the lock manager

68

DB
MG

69

Predicate locking

It addresses the ghost update of type b (insert)
anomaly

for 2PL a read operation is not in conflict with the
insert of a new tuple

the new tuple can’t be locked in advance

Predicate locking allows locking all data satisfying
a given predicate

implemented in real systems by locking indices

69

DB
MG

70

Locking in SQL2 standard

Transaction types

read-write (default case)

read only

no data or schema modifications are allowed

shared locks are enough

The isolation level of a transaction specifies how
it interacts with the other executing transactions

it may be set by means of SQL statements

70

DB
MG

71

Isolation levels

SERIALIZABLE

the highest isolation level

it includes predicate locking

REPEATABLE READ

strict 2PL without predicate locking

reads of existing objects can be correctly repeated

no protection against ghost update (b) anomaly

the computation of aggregate functions cannot be
repeated

71

DB
MG

72

Isolation levels

READ COMMITTED

not 2PL

the read lock is released as soon as the object is read

reading intermediate states of a transaction is avoided

dirty reads are avoided

READ UNCOMMITTED

not 2PL

data is read without acquiring the lock

dirty reads are allowed

only allowed for read only transactions

72

DB
MG

73

Locking in SQL2 standard

The isolation level of a transaction may be set by
means of the statement

The isolation level may be reduced only for read
operations

Write operations are always executed under strict
2PL with exclusive lock

73

SET TRANSACTION

[ISOLATION LEVEL <IsolationLevel>]

[READ ONLY]

[READ WRITE]

DB
MG

Database Management Systems

Deadlock

74

DB
MG

75

Deadlock

time

Typical situation for concurrent systems managed by
means of

locking

waiting conditions 75

Transaction T1 Transaction T2

bot
r_lock1(x)

r1(x)
bot

r_lock2(y)
r2(y)

w_lock1(y)
w_lock2(x)

wait wait

DB
MG

Solving deadlocks

Timeout

the transaction waits for a given time

after the expiration of the timeout

it receives a negative answer and it performs
rollback

Typically adopted in commercial DBMS

Length of the timeout interval

long

long waiting before solving the deadlock

short

overkill, which overloads the system

7676

DB
MG

Deadlock prevention

Pessimistic 2PL

All needed locks are acquired before the
transaction starts

not always feasible

Timestamp

only “younger” (or older) transactions are allowed
to wait

it may cause overkill

7777

DB
MG

Deadlock detection

Based on the wait graph

nodes are transactions

an edge represents a waiting state between two
transactions

A cycle in the graph represents a deadlock

Expensive to build and maintain

used in distributed DBMS

7878

T2
T1

