
Version #1  
 

Big Data: Architectures and Data Analytics 

February 15, 2019 

Student ID ______________________________________________________________  

First Name ______________________________________________________________ 

Last Name ______________________________________________________________ 

Part I 
Answer to the following questions. There is only one right answer for each question. 

 

 1. (2 points) Consider the HDFS file logs.txt. The size of logs.txt is 5000MB. Suppose 

that you are using a Hadoop cluster that can potentially run up to 10 mappers in 

parallel and suppose to execute a MapReduce-based program that selects the 

rows of logs.txt containing the word “ERROR” or “WARNING”. Which of the 

following values is a proper HDFS block size if you want to “force” Hadoop to run 

10 mappers in parallel when you execute the application by specifying logs.txt as 

input file? 

 a) Block size: 5000MB 

 b) Block size: 2048MB 

 c) Block size: 1024MB 

 d) Block size: 512MB 

 

 2. (2 points) Consider the cache “mechanism” of Spark. Which one of the following 

statements is true? 

 a) Caching an RDD that is generated from another RDD is never useful 

 b) At most one RDD per application can be cached 

 c) Caching an RDD that is used multiple times in an application could improve the 

efficiency of the application (in terms of execution time) 

 d) An RDD must never be cached 

 



Version #1  
 

Part II 

 

PoliTravel is an international online travel agency operating all around the world. To plan 

better travels for their clients, the managers of the PoliTravel are interested in 

characterizing the cities around the world based on the amount and types of POIs (points 

of interest) of each city. Each city can have thousands of POIs. 

The analyses are based on the following input data set/file. 

 POIs.txt 

o POIs.txt is a text file containing the information about the POIs of all the cities 

of the world (i.e., billions of POIs).  

o Each line of POIs.txt contains the information about one POI and has the 

following format 

 POI_ID,latitude,longitude,city,country,category,subcategory 
 

where POI_ID is the identifier of the represented POI, latitude and 

longitude represent the geographical position of that POI, city and 

country are the city and the country associated with that POI, 

respectively, and category and subcategory represent its category and 

subcategory. 
 

 For example, the following line 

P101,45.0621644,7.578633,Turin,Italy,shop,shoes 

means that POI P101 represents a shop (category) of shoes 

(subcategory) that is located in Turin (Italy), and its geographical 

position is (lat=45.0621644, long=7.578633). 

 

 

Exercise 1 – MapReduce and Hadoop (8 points) 

The managers of PoliTravel are interested in selecting the subset of Italian cities with 
many “tourism” POIs, several of which are museums. 

Design a single application, based on MapReduce and Hadoop, and write the 
corresponding Java code, to address the following point: 

A. Italian cities with many “turism” POIs and several museums. Considering only the 

Italian cities and their POIs, the application must select the Italian cities with (i) 
more than 1000 tourism POIs (category=“tourism”) and (ii) at least 20 museums 

(subcategory=“museum”). Note that the “museum” subcategory is a subcategory of 
the “tourism” category. The output file contains one line for each of the selected 
Italian cities (one city name per line). 



Version #1  
 

The name of the output folder is an argument of the application. The other argument is the 
path of the input file POIs.txt. Note that POIs.txt contains the POIs of all the cities around 
the world but the analysis is focused only on the Italian cities. 

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for 
the other parts (Mapper and Reducer). 

 

Exercise 2 – Spark and RDDs (19 points) 

The management of PoliTravel is interested in selecting the Italian cities with taxis but 

without buses (i.e., those with POIs with subcategory=“Taxi” but without POIs with 
subcategory=“Busstop”).  

Moreover, the managers of PoliTravel are interested in selecting the Italian cities with a 
number of museums greater than the average number of museums per city in Italy. 

The managers of PoliTravel asked you to develop one single application to address the 
two analyses they are interested in. The application has three arguments: the input file 
POIs.txt, and two output folders (associated with the outputs of the following points A and 

B, respectively). 

Specifically, design a single application, based on Spark, and write the corresponding Java 

code, to address the following points: 

A. (8 points) Italian cities with taxis but without buses. Considering only the Italian cities, 

the application must select the Italian cities with at least one “taxi” POI 
(subcategory=“Taxi”) but without “Busstop” POIs (subcategory=“Busstop”). The 
application stores in the first HDFS output folder the selected cities, one city per line.  

B. (11 points) Italian cities with "many" museums with respect to the other Italian cities. 

Considering only the Italian cities, the application must select the Italian cities with a 
number of “museum” POIs (subcategory=“museum”) greater than the average number 

of “museum” POIs per city in Italy. The application stores in the second HDFS output 
folder the selected cities, one city per line.  

For instance, as a running example, suppose that in Italy there are only three cities: 
Carmagnola, Rome, and Naples. Suppose that Carmagnola has 0 “museum” POIs, 
Rome has 42 “museum” POIs, and Naples has 18 “museum” POIs. Hence, the 

average number of “museum” POIs per city in Italy is 20 and only Rome must be 
selected. 

  



Version #1  
 

Big Data: Architectures and Data Analytics 

February 15, 2019 

Student ID ______________________________________________________________  

First Name ______________________________________________________________  

Last Name ______________________________________________________________  

Use the following template for the Driver of Exercise 1  
Fill in the missing parts. You can strikethrough the second job if you do not need it. 

import …. 
/* Driver class. */ 
public class DriverBigData extends Configured implements Tool { 

public int run(String[] args) throws Exception { 
Path inputPath = new Path(args[0]); 
Path outputDir = new Path(args[1]); 
Configuration conf = this.getConf(); 

     
// First job 
Job job1 = Job.getInstance(conf);  
job1.setJobName("Exercise 1 - Job 1"); 
// Job 1 - Input path  
FileInputFormat.addInputPath(job,                                ); 
 
// Job 1 - Output path  
FileOutputFormat.setOutputPath(job,                                ); 

     
// Job 1 - Driver class 
job1.setJarByClass(DriverBigData.class); 

     
// Job1 - Input format 
job1.setInputFormatClass(                                                                   ); 

     
// Job1 - Output format 
job1.setOutputFormatClass(                                                                   ); 

     
// Job 1 -  Mapper class 
job1.setMapperClass(Mapper1BigData.class); 

     // Job 1 – Mapper: Output key and output value: data types/classes 
job1.setMapOutputKeyClass(                                                                   ); 
 
job1.setMapOutputValueClass(                                                                   ); 

     
// Job 1 -  Reducer class 
job.setReducerClass(Reducer1BigData.class); 

         
// Job 1 – Reducer: Output key and output value: data types/classes 
job1.setOutputKeyClass(                                                                   ); 
 
job1.setOutputValueClass(                                                                   ); 
 
// Job 1 - Number of reducers 
job1.setNumReduceTasks( 0[ _ ] or exactly 1[ _ ] or >=1[ _ ] ); /* Select only one of the three options */ 
 



Version #1  
 

     // Execute the first job and wait for completion 
if (job1.waitForCompletion(true)==true) 
{ 

// Second job 
Job job2 = Job.getInstance(conf);  
job2.setJobName("Exercise 1 - Job 2"); 
// Set path of the input folder of the second job 
FileInputFormat.addInputPath(job2,                                                                   ); 

         
// Set path of the output folder for the second job 
FileOutputFormat.setOutputPath(job2,                                                                   ); 

         
// Class of the Driver for this job 
job2.setJarByClass(DriverBigData.class); 

         
// Set input format 
job2.setInputFormatClass(                                                                   ); 

         
// Set output format 
job2.setOutputFormatClass(                                                                   ); 

         
// Set map class 
job2.setMapperClass(Mapper2BigData.class); 

         
// Set map output key and value classes 
job2.setMapOutputKeyClass(                                                                   ); 
 
job2.setMapOutputValueClass(                                                                   ); 

         
// Set reduce class 
job2.setReducerClass(Reducer2BigData.class); 

             
// Set reduce output key and value classes 
job2.setOutputKeyClass(                                                                   ); 
 
job2.setOutputValueClass(                                                                   ); 

 
// Set number of reducers of the second job 
job2.setNumReduceTasks( 0[ _ ] or exactly 1[ _ ] or >=1[ _ ] ); /* Select only one of the three  
        options */ 

 
         
// Execute the job and wait for completion 
if (job2.waitForCompletion(true)==true) 
         exitCode=0; 
else 
         exitCode=1; 

    } 
    else 

      exitCode=1; 

      
    return exitCode; 
} 
/* Main of the driver  */ 

   public static void main(String args[]) throws Exception { 
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args); 
System.exit(res); 
} 

} 
 


