
Version #2

Big Data: Architectures and Data Analytics

July 2, 2019

Student ID __

First Name __

Last Name __

The exam is open book and lasts 2 hours.

Part I
Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

package … import ….

public class SparkDriver {

 public static void main(String[] args) {

 SparkConf conf=new SparkConf().setAppName("Exam");

 JavaSparkContext sc = new JavaSparkContext(conf);

 JavaRDD<String> logsRDD = sc.textFile("logs.txt");

 /* Select URLs from logs */

 JavaRDD<String> URLsRDD = logsRDD.map(line -> {

 String[] fields = line.split(“,”);

 String URL = fields[0];

 return URL; });

 JavaRDD<String> distinctURLs = URLsRDD.distinct();

 Long numDistinctURLs = distinctURLs.count();

 System.out.println(numDistinctURLs);

/* Select URLs starting with ‘A’ */

 JavaRDD<String> filteredLinesRDD = logsRDD.filter(line ->

 return line.startsWith(“A”));

 Long numSelectedLines = filteredLinesRDD.count();

 System.out.println(numSelectedLines);

 sc.close();

 }

}
d
Which one of the following statements is true?

 a) Caching logsRDD can improve the efficiency of the application (in terms of

execution time)

 b) Caching URLsRDD can improve the efficiency of the application (in terms of

execution time)

Version #2

 c) Caching distinctURLs can improve the efficiency of the application (in terms of

execution time)

 d) Caching filteredLinesRDD can improve the efficiency of the application (in terms

of execution time)

 2. (2 points) Consider an input HDFS folder logsFolder containing the files log2017.txt

and log2018.txt. log2017.txt contains the logs of year 2017 and its size is 2052MB

while log2018.txt contains the logs of year 2018 and its size is 252MB. Suppose

that you are using a Hadoop cluster that can potentially run up to 10 instances of

the mapper in parallel. Suppose to execute a map-only application, based on

MapReduce, that selects the lines containing the string 2017, by specifying

logsFolder as input folder. The HDFS block size is 256MB. How many mappers are

instantiated by Hadoop when you execute the application by specifying the folder

logsFolder as input?

 a) 11

 b) 10

 c) 9

 d) 1

Part II
PoliData is an international company managing large data centers around the world. Each

managed server is equipped with a sensor that measures its inside temperature.

Anomalous temperature values are stored and then analyzed by the administrators of the

data centers. The statistics are computed by analyzing the following input data sets/files.

 Servers.txt

o Servers.txt is a textual file containing the information about the servers

managed by PoliData. There is one line for each server and the total number

of servers is greater than 100,000 (i.e., Servers.txt contains more than

100,000 lines)

o Each line of Servers.txt has the following format

 SID,CPUVersion,DataCenterID,City,Country

where SID is the server identifier, CPUVersion is the version of its

CPU, DataCenterID is the identifier of the data center in which the

server is located, City is the city in which the data center is located

and Country is the country of City.

 For example, the following line

SID31,PentiumV,DC10,Turin,Italy

Version #2

means that the server with id SID31 has a PentiumV CPU and it is

located in the data center with id DC10, which is located in Turin

(Italy).

 Servers_TemperatureAnomalies.txt

o Servers_TemperatureAnomalies.txt is a textual file containing the information

about the anomalous temperatures of the servers managed by PoliData. It

contains the historical anomalies about the last 15 years. A new line is

inserted in Servers_TemperatureAnomalies.txt every time an anomalous

high temperature occurs inside a server.

o Each line of Servers_TemperatureAnomalies.txt has the following format

 SID,Timestamp,AnomalousTemperatureValue

where Timestamp is the timestamp at which an anomalous

temperature was measured inside server SID, and

anomalousTemperatureValue is the measured anomalous

temperature value.

 For example, the following line

SID31,2018/03/01_15:40,90

means that at 15:40 of March 1, 2018 an anomalous temperature of

90°C was measured inside server SID31.

Exercise 1 – MapReduce and Hadoop (8 points)

The managers of PoliData are interested in analyzing the information about the CPU
versions of the servers located in Spain.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

A. Spanish data centers with single CPU version. The application analyzes the

Spanish data centers (i.e., the data centers located in Spain). Specifically, a

Spanish data center is selected if all its servers are characterized by the same CPU
version. Store the identifiers of the selected data centers, and the associated CPU
versions, in an HDFS folder. Each output line of the output contains one pair

(DataCenterID,CPUVersion), one line per DataCenterID.

For example, suppose that all the servers of the data center with id DS31 are equipped

with a PentiumV CPU while among the servers of data center DS12 some servers are
equipped with a PentiumIV CPU and some with a 8086 CPU. DS31 is selected by the
application and DS31,PentiumV is stored in the output folder while DS12 is not

selected.

The name of the output folder is an argument of the application. The other argument is

the path of the input file Servers.txt, which contains the information about all the
servers used around the world but pay attention that the analysis we are interested in is
focused only on the servers located in Spain.

Version #2

Fill out the provided template for the Driver of this exercise. Use your sheets of paper for
the other parts (Mapper and Reducer).

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliData are interested in performing some analyses about the

anomalous temperatures measured inside the servers in the last nine years.

The managers of PoliData asked you to develop one single application to address all the

analyses they are interested in. The application has four arguments: the two input files
Servers.txt and Servers_TemperatureAnomalies.txt and two output folders (associated
with the outputs of the following points A and B, respectively).

Specifically, design a single application, based on Spark, and write the corresponding Java
or Scala code, to address the following points:

A. (9 points) Critical servers during years 2010-2018. Considering only the anomalies

related to the last nine years (years 2010-2018) and only the anomalies with a

measured temperature value greater than 100°C, the application selects the servers
with more than fifty anomalies in at least one of the last nine years (i.e., a server is
selected if there is at least one year (between 2010 and 2018) for which that server is

associated with more than 50 anomalies with temperature>100°C). The application
stores in the first HDFS output folder the SIDs of the selected servers (one SID per
line).

B. (10 points) Data centers characterized by servers with a limited number of anomalous
temperatures during years 2010-2018. Considering only the anomalies related to the

last nine years (years 2010-2018), the application selects the identifiers of the data
centers for which all servers are characterized by a limited number of temperature
anomalies. Specifically, a data center is selected if all its servers are associated with at

most 10 anomalies during years 2010-2018 (at most 10 anomalies for each server in
the nine years). The application prints on the standard output the number of selected
data centers and stores in the second HDFS output folder the identifiers of the selected

data centers (one DataCenterID per line).

For instance,

 Suppose that in the data center DC31 there are three servers and suppose that
during years 2010-2018 there were 6 anomalies for the first server, 5 anomalies

for the second server, and 30 anomalies for the third server. DC31 must not be
selected by the Spark application (Point B) because the third server is
associated with more than 10 anomalies in the last nine years.

 Suppose that in the data center DC10 there are two servers and suppose that

during years 2010-2018 there were 6 anomalies for the first server and 7
anomalies for the second server. DC10 must be selected by the Spark
application (Point B) because all its servers are associated with at most 10

anomalies in the last nine years.

Note. Pay attention that there are servers without anomalies (i.e., some servers occur
in Servers.txt but not in Servers_TemperatureAnomalies.txt).

Version #2

Big Data: Architectures and Data Analytics

July 2, 2019

Student ID __

First Name __

Last Name __

Use the following template for the Driver of Exercise 1
Fill in the missing parts. You can strikethrough the second job if you do not need it.

import ….
/* Driver class. */
public class DriverBigData extends Configured implements Tool {

public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]); Path outputDir = new Path(args[1]);
Configuration conf = this.getConf();

// First job
Job job1 = Job.getInstance(conf);
job1.setJobName("Exercise 1 - Job 1");
// Job 1 - Input path
FileInputFormat.addInputPath(job,);

// Job 1 - Output path
FileOutputFormat.setOutputPath(job,);

// Job 1 - Driver class
job1.setJarByClass(DriverBigData.class);

// Job1 - Input format
job1.setInputFormatClass();

// Job1 - Output format
job1.setOutputFormatClass();

// Job 1 - Mapper class
job1.setMapperClass(Mapper1BigData.class);

 // Job 1 – Mapper: Output key and output value: data types/classes
job1.setMapOutputKeyClass();

job1.setMapOutputValueClass();

// Job 1 - Reducer class
job.setReducerClass(Reducer1BigData.class);

// Job 1 – Reducer: Output key and output value: data types/classes
job1.setOutputKeyClass();

job1.setOutputValueClass();

// Job 1 - Number of instances of the reducer of the first Job
job1.setNumReduceTasks(0[_] or exactly 1[_] or any number >=1[_]); /* Select only one of
 these three options */

Version #2

 // Execute the first job and wait for completion
if (job1.waitForCompletion(true)==true)
{

// Second job
Job job2 = Job.getInstance(conf);
job2.setJobName("Exercise 1 - Job 2");
// Set path of the input folder of the second job
FileInputFormat.addInputPath(job2,);

// Set path of the output folder for the second job
FileOutputFormat.setOutputPath(job2,);

// Class of the Driver for this job
job2.setJarByClass(DriverBigData.class);

// Set input format
job2.setInputFormatClass();

// Set output format
job2.setOutputFormatClass();

// Set map class
job2.setMapperClass(Mapper2BigData.class);

// Set map output key and value classes
job2.setMapOutputKeyClass();

job2.setMapOutputValueClass();

// Set reduce class
job2.setReducerClass(Reducer2BigData.class);

// Set reduce output key and value classes
job2.setOutputKeyClass();

job2.setOutputValueClass();

// Job 2 - Number of instances of the reducer of the second Job
Job2.setNumReduceTasks(0[_] or exactly 1[_] or any number >=1[_]); /* Select only

 one of these three options */

// Execute the job and wait for completion
if (job2.waitForCompletion(true)==true)
 exitCode=0;
else
 exitCode=1;

 }
 else

 exitCode=1;

 return exitCode;
}
/* Main of the driver */

 public static void main(String args[]) throws Exception {
int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
System.exit(res);
}

}

