
DB
MG

NoSQL databases

Introduction to MongoDB
(part 2)

DB
MG

MongoDB

Databases and collections.
insert, update, and delete operations.

DB
MG

MongoDB: Databases and Collections

Each instance of MongoDB can manage multiple
databases

Each database is composed of a set of
collections

Each collection contains a set of documents

The documents of each collection represent
similar “objects”

However, remember that MongoDB is schema-less

You are not required to define the schema of the
documents a-priori and objects of the same
collections can be characterized by different fields

DB
MG

MongoDB: Databases and Collections

Show the list of available databases

show databases;

Select the database you are interested in

use <database name>;

E.g.,

use deliverydb;

Note: shell commands vs GUI interface.

DB
MG

MongoDB: Databases and Collections

Create a database and a collection inside the database

Select the database by using the command
use <database name>

Then, create a collection
MongoDB creates a collection implicitly when the
collection is first referenced in a command

Delete/Drop a database

Select the database by using use <database name>

Execute the command db.dropDatabase()

E.g.,
use deliverydb;

db.dropDatabase();

DB
MG

MongoDB: Databases and Collections

A collection stores documents, uniquely identified by a
document “_id”
Create collections

db.createCollection(<collection name>,
<options>);

The collection is associated with the current
database. Always select the database before creating
a collection.
Options related to the collection size and indexing,
e.g., e.g., to create a capped collection, or to create
a new collection that uses document validation

E.g.,
db.createCollection("authors“, {capped:
true});

DB
MG

MongoDB: Databases and Collections

Show collections

show collections;

Drop collections

db.<collection name>.drop();

E.g.,

db.authors.drop();

DB
MG

MongoDB: Read/Insert/Update data

MongoDB Relational database

db.users.find() SELECT * FROM users

db.users.insert({

user_id: 'bcd001',

age: 45,

status: 'A'})

INSERT INTO

users (user_id, age, status)

VALUES ('bcd001', 45, 'A')

db.users.update(

{ age: { $gt: 25 } },

{ $set: { status:

'C'}},

{ multi: true })

UPDATE users

SET status = 'C'

WHERE age > 25

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field name

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

E.g.,

db.people.insertOne({

user_id: "abc123",

age: 55,

status: "A"

});

Field value

DB
MG

MongoDB: Insert documents

Insert a single document in a collection
db.<collection name>.insertOne({<set of the

field:value pairs of the new document>});

Now people contains a new document representing
a user with:

user_id: "abc123",

age: 55

status: "A"

DB
MG

MongoDB: Insert documents

E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

favorite_colors: ["blue", "green"]

});

Now people contains a new document representing
a user with:

user_id: "abc124", age: 45

and an array favorite_colors containing the
values "blue" and "green"

Favorite_colors

is an array

DB
MG

E.g.,

db.people.insertOne({

user_id: "abc124",

age: 45,

address: {

street: "my street",

city: "my city"

}

});

Example of a document containing a nested document

MongoDB: Insert documents

Nested document

DB
MG

MongoDB: inserting data

MySQL clause MongoDB operator

INSERT INTO insertOne()

New data needs to be inserted into the
database.

Each SQL tuple corresponds to a MongoDB
document

The primary key _id is automatically added if
the _id field is not specified.

DB
MG

INSERT INTO

people(user_id,

age,

status)

VALUES ("bcd001",

45,

"A")

db.people.insertOne(

{

user_id: "bcd001",

age: 45,

status: "A"

}

)

MongoDB: inserting data

MySQL clause MongoDB operator

INSERT INTO insertOne()

DB
MG

db.products.insertMany([

{ user_id: "abc123", age: 30, status: "A"},

{ user_id: "abc456", age: 40, status: "A"},

{ user_id: "abc789", age: 50, status: "B"}

]);

MongoDB: inserting data

Insert multiple documents in a single statement:
operator insertMany()

DB
MG

MongoDB: Insert documents

Insert many documents with one single command
db.<collection name>.insertMany([<comma

separated list of documents>]);

E.g.,

db.people.insertMany([

{user_id: "abc123", age: 55, status: "A”},

{user_id: "abc124", age: 45,

favorite_colors: ["blue", "green"]}

]);

DB
MG

MongoDB: Document update

Documents can be updated by using

db.collection.updateOne(<filter>,

<update>, <options>)

db.collection.updateMany(<filter>,

<update>, <options>)

<filter> = filter condition. It specifies which

documents must be updated

<update> = specifies which fields must be

updated and their new values

<options> = specific update options

DB
MG

MongoDB: Document update

E.g.,
db.inventory.updateMany(

{ "qty": { $lt: 50 } },

{

$set: { "size.uom": "in", status: "P" },

$currentDate: { lastModified: true }

}

)

This operation updates all documents with qty<50

It sets the value of the size.uom field to "in", the value
of the status field to "P", and the value of the
lastModified field to the current date.

DB
MG

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

Tuples to be updated should be selected using
the WHERE statements

DB
MG

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{ age: { $gt: 25 } },

{ $set: { status: "C" }}

)

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

DB
MG

UPDATE people

SET status = "C"

WHERE age > 25

db.people.updateMany(

{ age: { $gt: 25 } },

{ $set: { status: "C" }}

)

MongoDB: updating data

MySQL clause MongoDB operator

UPDATE <table>

SET <statement>

WHERE <condition>

db.<table>.updateMany(

{ <condition> },

{ $set: {<statement>} }

)

UPDATE people

SET age = age + 3

WHERE status = "A"

db.people.updateMany(

{ status: "A" } ,

{ $inc: { age: 3 } }

)

The $inc operator increments a

field by a specified value

https://docs.mongodb.com/manual/reference/operator/update/inc/#up._S_inc

DB
MG

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

Delete existing data, in MongoDB corresponds to
the deletion of the associated document.

Conditional delete

Multiple delete

DB
MG

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DB
MG

DELETE FROM people

WHERE status = "D"

db.people.deleteMany(

{ status: "D" }

)

MongoDB: deleting data

MySQL clause MongoDB operator

DELETE FROM deleteMany()

DELETE FROM people db.people.deleteMany({})

DB
MG

MongoDB

Operational and design features

DB
MG

MongoDB

Transactions and sharding

DB
MG

MongoDB: Main features

MongoDB did not support multi-document transactions
ACID properties only at the document level

You can use embedded documents and arrays to capture relationships between data in a
single document structure instead of normalizing across multiple documents and collections
Single-document atomicity obviates the need for multi-document transactions for many practical
use cases.

Since MongoDB 4.0, multi-document transactions are supported
Distributed transactions across operations, collections, databases,
documents, shards
“Distributed Transactions” and “Multi-Document Transactions”, starting
in MongoDB 4.2, the two terms are synonymous.
This feature impacts on its efficiency

In most cases, multi-document transaction incurs a greater performance cost over single
document writes, and the availability of multi-document transactions should not be a
replacement for effective schema design.
For many scenarios, the denormalized data model (embedded documents and arrays) will
continue to be optimal for your data and use cases. That is, for many scenarios, modeling your
data appropriately will minimize the need for multi-document transactions.

29

DB
MG

MongoDB: Main features

Horizontal scalability by means of sharding
Each shard contains a subset of the documents
Pay attention to the sharding attribute, as it impacts significantly on the
performance of your queries

Horizontal Scaling involves dividing the system dataset and load over
multiple servers, adding additional servers to increase capacity as required.

While the overall speed or capacity of a single machine may not be high, each
machine handles a subset of the overall workload, potentially providing
better efficiency than a single high-speed high-capacity server.
Expanding the capacity of the deployment only requires adding additional
servers as needed, which can be a lower overall cost than high-end
hardware for a single machine.
The trade off is increased complexity in infrastructure and maintenance for
the deployment.

Vertical Scaling involves increasing the capacity of a single server, such as
using a more powerful CPU, adding more RAM, or increasing the amount of
storage space.

Limitations in available technology may restrict a single machine from being
sufficiently powerful for a given workload.

30https://docs.mongodb.com/manual/sharding/index.html

https://docs.mongodb.com/manual/sharding/index.html

DB
MG

MongoDB: Main features

Horizontal scalability by means of sharding
Each shard contains a subset of the documents
Pay attention to the sharding attribute, as it impacts significantly on
the performance of your queries

MongoDB uses the shard key to distribute the collection’s documents
across shards.

The shard key consists of a field or fields that exist in every document in
the target collection. A sharded collection can have only one shard key.
The choice of shard key cannot be changed after sharding, nor can you
unshard a sharded collection.
Although you cannot change which field or fields act as the shard key, starting
in MongoDB 4.2, you can update a document’s shard key value (apart from
the _id field). Before MongoDB 4.2, a document’s shard key field value is
immutable.
To shard a non-empty collection, the collection must have an index that
starts with the shard key.
The choice of shard key affects the performance, efficiency, scalability, and
also the availability (HA) of a sharded cluster.
MongoDB distributes the read and write workload across the shards in the
sharded cluster, allowing each shard to process a subset of cluster operations.

31https://docs.mongodb.com/manual/sharding/index.html

https://docs.mongodb.com/manual/sharding/index.html

DB
MG

MongoDB: Main features

Horizontal scalability by means of sharding

MongoDB uses the shard key to distribute the
collection’s documents across shards.

32https://docs.mongodb.com/manual/sharding/index.html

https://docs.mongodb.com/manual/sharding/index.html

DB
MG

MongoDB: Main features

Horizontal scalability by means of sharding

MongoDB uses the shard key to distribute the
collection’s documents across shards.

33https://docs.mongodb.com/manual/sharding/index.html

https://docs.mongodb.com/manual/sharding/index.html

