
MapReduce

a scalable distributed
programming model
to process Big Data



MapReduce
• Published in 2004 by Google

• J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, OSDI'04: 
Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December, 
2004

• used to rewrite the production indexing system with 24 MapReduce operations (in August 2004 
alone, 3288 TeraBytes read, 80k machine-days used, jobs of 10’ avg)

• Distributed programming model

• Process large data sets with parallel algorithms on a cluster of common machines, e.g., 
PCs

• Great for parallel jobs requiring pieces of computations to be executed on all data 
records

• Move the computation (algorithm) to the data (remote node, PC, disk)

• Inspired by the map and reduce functions used in functional programming
• In functional code, the output value of a function depends only on the arguments that are passed to the function, so 

calling a function f twice with the same value for an argument x produces the same result f(x) each time; this is in 
contrast to procedures depending on a local or global state, which may produce different results at different times 
when called with the same arguments but a different program state.



MapReduce: working principles

• Consists of two functions, a Map and a Reduce
• The Reduce is optional
• Additional shuffling / finalize steps, implementation specific

• Map function 
• Process each record (document) → INPUT
• Return a list of key-value pairs → OUTPUT

• Reduce function
• for each key, reduces the list of its values, returned by the map, to a 

“single” value 
• Returned value can be a complex piece of data, e.g., a list, tuple, etc.



Map

• Map functions are called once for each document:
function(doc) {

emit(key1, value1); // key1 = fk1(doc); value1 = fv1(doc)

emit(key2, value2); // key2 = fk2(doc); value2 = fv2(doc)

}

• The map function can choose to skip the document altogether or emit one 
or more key/value pairs

• Map function may not depend on any information outside the document
• This independence is what allows map-reduces to be generated incrementally and in 

parallel
• Some implementations allow global / scope variables



Map example

• Example database, a collection of docs describing university exam records

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8



• List of exams and corresponding marks
Function(doc){

emit(doc.exam, doc.mark);
} Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Key Value

Map example (1)



Map example (2)
• Ordered list of exams, academic year, and date, and select their mark

Function(doc) {
key = [doc.exam, doc.AYear]
value = doc.mark
emit(key, value);

}

Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 [Bioinformatics, 2015-16] 30

2 [Computer architectures, 2015-16] 24

3 [Computer architectures, 2015-16] 27

4 [Database, 2014-15] 26

8 [Database, 2014-15] 25

1 [Database, 2015-16] 29

5 [Software engineering, 2014-15] 21

7 [Software engineering, 2015-16] 18



• Ordered list of students, with mark and CFU for each exam
Function(doc) {

key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}
Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Map example (3)



Reduce

• Documents (key-value pairs) emitted by the map function are 
sorted by key
• some platforms (e.g. Hadoop) allow you to specifically define a shuffle phase to 

manage the distribution of map results to reducers spread over different nodes, thus 
providing a fine-grained control over communication costs

• Reduce inputs are the map outputs: a list of key-value documents

• Each execution of the reduce function returns one key-value document

• The most simple SQL-equivalent operations performed by means of 
reducers are «group by» aggregations, but reducers are very flexible 
functions that can execute even complex operations

• Re-reduce: reduce functions can be called on their own results (in some 
implementations)



MapReduce example (1)

• Map - List of exams and 
corresponding mark

Function(doc){

emit(doc.exam, doc.mark);

}

• Reduce - Compute the 
average mark for each exam

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

Key Value

Bioinformatics 30

Computer
architectures

25.5

Database 26.67

Software 
engineering

19.5

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map Reduce

The reduce function receives:
• key=Bioinformatics, values=[30]
• …
• key=Database, values=[29,26,25]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8



MapReduce example (2)

doc.id Key Value

6 Bioinformatics, 2015-16 30

2 Computer architectures, 2015-16 24

3 Computer architectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Map Reduce

• Map - List of exams and 
corresponding mark

Function(doc){

emit(

[doc.exam, doc.AYear],

doc.mark

);

}

• Reduce - Compute the average
mark for each
exam and academic year

Function(key, values){

S = sum(values);

N = len(values);

AVG = S/N;

return AVG;

}

The reduce function receives:
• key=[Database, 2014-15], values=[26,25]
• key=[Database, 2015-16], values=[29]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Reduce is the same as before



Rereduce in CouchDB
• Average mark the for each exam (group level=1) – same Reduce as before

doc.id Key Value

6 Bioinformatics, 2015-16 30

2
Computer architectures, 

2015-16
24

3
Computer architectures, 

2015-16
27

4
Database, 2014-1015

26

8
Database, 2014-15

25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures, 
2015-16]

25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Id: 3
Exam: Computer 
architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8

Id: 2
Exam: Computer 
architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software 
engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software 
engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Map ReduceDB

Key Value

Bioinformatics 30

Computer architectures 25.5

Database 27.25

Software engineering 19.5

Rereduce



MapReduce example (3a)

• MapFunction(doc) {

key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}

• Reduce
Function(key, values){

S = sum([ X*Y for X,Y in values ]);
N = sum([ Y for X,Y in values ]);
AVG = S/N;
return AVG;

}

doc.id Key Value

Map

Key Value

ReduceThe reduce function receives:
• key= 

values=
• …
• key= 
• values=

The reduce function results:
• key= 

values=
• …
• key= 
• values=

Average CFU-weighted mark for each student

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016 
Mark=29
CFU=8



MapReduce example (3a)
• Map - Ordered list of students, with 

mark and CFU for each exam
Function(doc) {

key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}

• Reduce - Average CFU-weighted
mark for each student

Function(key, values){
S = sum([ X*Y for X,Y in values ]);
N = sum([ Y for X,Y in values ]);
AVG = S/N;
return AVG;

}

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Map

Key Value

S123456 25.6

S654321 23.9

s987654 25

Reduce

The reduce function receives:
• key=S123456, 

values=[(29,8), (24,10), (21,8)…]
• …
• key=s987654, values=[(25,8)]

key = S123456, 
values = [(29,8), (24,10), (21,8)…]
X = 29, 24, 21, … →mark
Y = 8, 10, 8, … →CFU



MapReduce example (3b)
• Compute the number of exams for each student

• Technological view of data distribution among different nodes

Id: 3 Exam: Computer architectures Student: s654321
AYear: 2015-16 Date: 26-01-2016 Mark=27 CFU=10

Id: 4 Exam: Database Student: s654321
AYear: 2014-15 Date: 26-07-2015 Mark=26 CFU=8

Id: 1 Exam: Database Student: s123456 
AYear: 2015-16 Date: 31-01-2016  Mark=29 CFU=8

Id: 2 Exam: Computer architectures Student: s123456 
AYear: 2015-16 Date: 03-07-2015 Mark=24 CFU=10

Id: 5 Exam: Software engineering Student: s123456
AYear: 2014-15 Date: 14-02-2015 Mark=21 CFU=8

Id: 6 Exam: Bioinformatics Student: s123456
AYear: 2015-16 Date: 18-09-2016 Mark=30 CFU=6

Id: 7 Exam: Software engineering Student: s654321
AYear: 2015-16 Date: 28-06-2016 Mark=18 CFU=8

Id: 8 Exam: Database Student: s987654
AYear: 2014-15 Date: 28-06-2015 Mark=25 CFU=8

DB
doc.id Key Value

1 S123456 [29, 1]

2 S123456 [24, 1]

5 S123456 [21, 1]

6 S123456 [30, 1]

3 S654321 [27, 1]

4 S654321 [26, 1]

7 S654321 [18, 1]

8 s987654 [25, 1]

Map

Key Value

S123456 3

S123456 1

S654321 3

s987654 1

Reduce

Key Value

S123456 4

S654321 3

s987654 1

Rereduce



Map Reduce



Aggregation operations in MongoDB

• Aggregation operations 
• group values from multiple documents together

• can perform a variety of operations on the grouped data 

• return an aggregated result

• MongoDB provides three ways to perform aggregation: 
• the aggregation pipeline

• exploits native operations within MongoDB, 

• is the preferred method for data aggregation in MongoDB

• the map-reduce function

• single-purpose aggregation methods

https://docs.mongodb.com/manual/aggregation/

https://docs.mongodb.com/manual/aggregation/


Single-Purpose Aggregation Operations

• Commands 
• db.collection.estimatedDocumentCount(), 

• db.collection.count() 

• db.collection.distinct()

• Features
• aggregate documents from a single 

collection

• simple access to common aggregation 
processes

• less flexible and powerful than aggregation 
pipeline and map-reduce



Comparison of aggregation operations

• Aggregation pipeline
• Performance and usability
• Virtually infinite pipeline of transformations
• Limited to the operators and expressions supported

• Map Reduce
• Besides grouping operations, can perform complex aggregation tasks 

• Custom map, reduce and finalize JavaScript functions offer flexibility

• Incremental aggregation on continuously growing datasets

• For most aggregation operations, the Aggregation Pipeline provides better 
performance and more coherent interface

• However, map-reduce operations provide some flexibility that is not 
presently available in the aggregation pipeline



MongoDB: Map-Reduce

• custom JavaScript functions

• db.collection.mapReduce( {
• <map>, 

• <reduce>, 

• <finalize>, 

• <query>, 

• <out>, 

• <sort>, 

• <limit>, 

• ...} )



MongoDB: Map-Reduce

1. MongoDB applies the map 
phase to each input 
document (i.e. the 
documents in the collection 
that match the query 
condition)

2. The map function emits
key-value pairs

3. For those keys that have 
multiple values, MongoDB 
applies the reduce phase, 
which collects and 
condenses the aggregated 
data

4. MongoDB then stores the 
results in a collection



MongoDB: Map-Reduce

• Map
• requires emit(key, value) to 

map each value with a key 
• It refers to the current document as 
this

• Reduce
• Groups all document with the same 

key. 
• These functions must be associative 

and commutative and must return an 
object of the same type of value 
emitted by Map (multiple calls to 
reduce function on the same key)

• Out
• Specifies where to output the map-

reduce query results 
• either a collection 

• or an inline result



MongoDB: Map-Reduce

• Finalize (optional) 
• Follows the reduce method and modifies the output

• Query (optional) 
• specifies the selection criteria for selecting the input documents to the map

function

• Sort (optional) 
• specifies the sort criteria for the input documents
• useful for optimization, e.g., specify the sort key to be the same as the emit key 

so that there are fewer reduce operations. 
• the sort key must be in an existing index

• Limit (optional) 
• specifies the maximum number of input documents 



MongoDB: Map-Reduce example

• E.g.,
db.orders.mapReduce(

function() {
emit(this.cust_id, this.amount);

}, 
function(key, values) {

return Array.sum(values)
};
{

query: {status: “A”},
out: “order_totals”

}
)



MongoDB: Map-Reduce

db.orders.mapReduce(
function() {emit(this.cust_id, this.amount);}, 
function(key, values) {return Array.sum(values)};
{

query: {status: “A”},
out: “order_totals”

}
)
• Only for orders with status: “A” 
• for each cust_id, 

• sum all the orders values 
• into the “order_totals” collection

Map function

Reduce function



MongoDB: Map-Reduce features

• All map-reduce functions in MongoDB are JavaScript and run within the mongod
process

• Map-reduce operations 
• take the documents of a single collection as the input
• perform any arbitrary sorting and limiting before beginning the map stage
• return the results as a document or into a collection

• When processing a document, the map function can create more than one key 
and value mapping or no mapping at all

• If you write map-reduce output to a collection, 
• you can perform subsequent map-reduce operations on the same input collection that merge 

replace, merge, or reduce new results with previous results (incremental Map Reduce)

• When returning the results of a map-reduce operation inline, 
• the result documents must be within the BSON Document Size limit, currently 16 megabytes

https://docs.mongodb.com/manual/reference/glossary/#term-collection


Hadoop

The de facto standard 
Big Data platform



Hadoop, a Big-Data-everything platform

• 2003: Google File System

• 2004: MapReduce by Google (Jeff 
Dean)

• 2005: Hadoop, funded by Yahoo, to 
power a search engine project

• 2006: Hadoop migrated to Apache 
Software Foundation

• 2006: Google BigTable

• 2008: Hadoop wins the Terabyte Sort 
Benchmark, sorted 1 Terabyte of data 
in 209 seconds, previous record was 
297 seconds

• 2009: additional components and sub-
projects started to be added to the 
Hadoop platform



Hadoop, platform overview



Hadoop, platform overview



Hadoop, platform overview



Hadoop, platform overview



Apache Hadoop, core components

• Hadoop Common: The common 
utilities that support the other 
Hadoop modules.

• Hadoop Distributed File System 
(HDFS™): A distributed file system 
that provides high-throughput access 
to application data.

• Hadoop YARN: A framework for job 
scheduling and cluster resource 
management.

• Hadoop MapReduce: A YARN-based 
system for parallel processing of 
large data sets.



Hadoop-related projects at Apache

• Ambari™: A web-based tool for provisioning, managing, and monitoring Apache 
Hadoop clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, 
HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard 
for viewing cluster health such as heatmaps and ability to view MapReduce, Pig and 
Hive applications visually alongwith features to diagnose their performance 
characteristics in a user-friendly manner.

• Avro™: A data serialization system.

• Cassandra™: A scalable multi-master database with no single points of failure.

• Chukwa™: A data collection system for managing large distributed systems.

• HBase™: A scalable, distributed database that supports structured data storage for 
large tables.

• Hive™: A data warehouse infrastructure that provides data summarization and ad hoc 
querying.

• Mahout™: A Scalable machine learning and data mining library.

• Pig™: A high-level data-flow language and execution framework for parallel 
computation.

• Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple 
and expressive programming model that supports a wide range of applications, 
including ETL, machine learning, stream processing, and graph computation.

• Tez™: A generalized data-flow programming framework, built on Hadoop YARN, which 
provides a powerful and flexible engine to execute an arbitrary DAG of tasks to process 
data for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™ and 
other frameworks in the Hadoop ecosystem, and also by other commercial software 
(e.g. ETL tools), to replace Hadoop™ MapReduce as the underlying execution engine.

• ZooKeeper™: A high-performance coordination service for distributed applications.

http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/


Apache Spark

• A fast and general engine for large-scale data processing

• Speed
• Run programs up to 100x faster than Hadoop MapReduce in 

memory, or 10x faster on disk.
• Apache Spark has an advanced DAG execution engine that 

supports acyclic data flow and in-memory computing.

• Ease of Use
• Write applications quickly in Java, Scala, Python, R.
• Spark offers over 80 high-level operators that make it easy to build 

parallel apps. And you can use it interactively from the Scala, 
Python and R shells.

• Generality
• Combine SQL, streaming, and complex analytics.
• Spark powers a stack of libraries including SQL and 

DataFrames, MLlib for machine learning, GraphX, and Spark 
Streaming. You can combine these libraries seamlessly in the same 
application.

• Runs Everywhere
• Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can 

access diverse data sources including HDFS, Cassandra, HBase, and 
S3.

https://spark.apache.org/sql/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://spark.apache.org/streaming/


Hadoop - why
• Storage

• distributed, 
• fault-tolerant, 
• heterogenous, 
• Huge-data storage engine.

• Processing
• Flexible (multi-purpose), 
• parallel and  scalable, 
• high-level programming (Java, Python, Scala, R), 
• batch and real-time, historical and streaming data processing, 
• complex modeling and basic KPI analytics.

• High availability
• Handle failures of nodes by design.

• High scalability
• Grow by adding low-cost nodes, not by replacement with higher-

powered computers.

• Low cost. 
• Lots of commodity-hardware nodes instead of expensive super-power 

computers.


