Data Management and Visualization

Distributed Transactions in relational databases
ACID properties

- **Atomicity**
 - It requires distributed techniques
 - 2 phase commit
- **Consistency**
 - Constraints are currently enforced only locally
- **Isolation**
 - It requires strict 2PL and 2 Phase Commit
- **Durability**
 - It requires the extension of local procedures to manage atomicity in presence of failure
Distributed query optimization is performed by the DBMS receiving the query execution request:

- It partitions the query in subqueries, each addressed to a single DBMS.
- It selects the execution strategy:
 - order of operations and execution technique
 - order of operations on different nodes
 - transmission cost may become relevant
 - (optionally) selection of the appropriate replica
- It coordinates operations on different nodes and information exchange.
All nodes (i.e., DBMS servers) participating to a distributed transaction must implement the same decision (commit or rollback)

- Coordinated by 2 phase commit protocol

Failure causes

- Node failure
- Network failure which causes lost messages
 - Acknowledgement of messages (ack)
 - Usage of timeout
- Network partitioning in separate subnetworks
2 Phase Commit protocol

Objective

- Coordination of the conclusion of a distributed transaction

Parallel with a wedding

- Priest celebrating the wedding
 - Coordinates the agreement
- Couple to be married
 - Participate to the agreement
2 Phase Commit protocol

- Distributed transaction
 - One coordinator
 - Transaction Manager (TM)
 - Several DBMS servers which take part to the transaction
 - Resource Managers (RM)
- Any participant may take the role of TM
 - Also the client requesting the transaction execution
TM and RM have separate private logs

Records in the TM log

- **Prepare**
 - it contains the identity of all RM's participating to the transaction (Node ID + Process ID)

- **Global commit/abort**
 - final decision on the transaction outcome

- **Complete**
 - written at the end of the protocol
New log records

New records in the RM log

- Ready
 - The RM is willing to perform commit of the transaction
 - The decision *cannot be changed* afterwards
 - The node has to be in a reliable state
 - WAL and commit precedence rules are enforced
 - Resources are locked
 - After this point the RM *loses its autonomy* for the current transaction
2 Phase Commit protocol
1. The TM

- Writes the prepare record in the log
- Sends the prepare message to all RM (participants)
- Sets a timeout, defining maximum waiting time for RM answer
2 Phase Commit protocol
2. The RMs

- Wait for the prepare message
- When they receive it
 - If they are in a reliable state
 - Write the ready record in the log
 - Send the ready message to the TM
 - If they are not in a reliable state
 - Send a not ready message to the TM
 - Terminate the protocol
 - Perform local rollback
- If the RM crashed
 - No answer is sent
2 Phase Commit protocol

RM

Ready

LOG

Prepare msg

TM

Prepare

LOG

Global

Commit/Abort

Global decision

Ready/not ready msg
3. The TM

- Collects all incoming messages from the RMs
- If it receives ready from *all* RMs
 - The commit global decision record is written in the log
- If it receives one or more not ready or the timeout expires
 - The abort global decision record is written in the log
1. The TM
 - Sends the global decision to the RM(s)
 - Sets a timeout for the RM answers
2 Phase Commit protocol

RM

Prepare msg

Ready/not ready msg

Global decision

Ack msg

TM

Prepare

Global Commit/Abort

Ready

LOG

Commit/Abort

LOG

LOG

DB
2. The RM

- Waits for the global decision
- When it receives it
 - The commit/abort record is written in the log
 - The database is updated
 - An ACK message is sent to the TM
2 Phase Commit protocol

RM

Ready
LOG

Prepare msg

Ready/not ready msg

Global decision

Ack msg

Commit/Abort
LOG

TM

Prepare
LOG

Global Commit/Abort
LOG

Complete
LOG

DB
3. The TM

- Collects the ACK messages from the RMs
- If *all* ACK messages are received
 - The complete record is written in the log
- If the timeout expires and some ACK messages are missing
 - A new timeout is set
 - The global decision is resent to the RMs which did not answer

until all answers are received
2 Phase Commit protocol

Phase I
- Prepare msg
- Ready/not ready msg
- Global decision
- Ack msg

Phase II
- Complete

Uncertainty window
- Ready
- Commit/Abort

RM

TM

LOG

DB
Each RM is affected by an *uncertainty window*
- Start after ready msg is sent
- End upon receipt of global decision

Local resources in the RM are locked during the uncertainty window
- It should be small
The warm restart procedure is modified with a new case

- If the last record in the log for transaction T is “ready”, then T does not know the global decision of its TM

Recovery

- READY list
 - new list collecting the IDs of all transactions in ready state
 - For all transactions in the ready list, the global decision is asked to the TM at restart
 - Remote recovery request
Failure of the coordinator (TM)

Messages that can be lost
- Prepare (outgoing)
- Ready (incoming)
- Global decision (outgoing)

Recovery
- If the last record in the TM log is prepare
 - The global abort decision is written in the log and sent to all participants
 - Alternative: redo phase I (not implemented)
- If the last record in the TM log is the global decision
 - Repeat phase II
Any network problem in phase I causes global abort
- The prepare or the ready msg are not received

Any network problem in phase II causes the repetition of phase II
- The global decision or the ACK are not received