
Distributed Data Management

Introduction to 
data replication and 

the CAP theorem



Replication

Same data 
in different places



Replication

• Same data
• portions of the whole dataset (chunks)

• in different places
• local and/or remote servers, clusters, data centers

• Goals
• Redundancy helps surviving failures (availability)
• Better performance

• Approaches
• Master-Slave replication
• A-Synchronous replication



Master-Slave replication

• Master-Slave
• A master server takes all the 

writes, updates, inserts

• One or more Slave servers take all
the reads (they can’t write)

• Only read scalability

• The master is a single point of 
failure

• Some NoSQLs (e.g., CouchDB) 
support Master-Master replica

Master

Slave Slave Slave Slave

… …

Only read operations

Read-write operations



Synchronous replication

• Before committing a transaction, the Master waits for (all) the Slaves to commit
• Similar in concept to the 2-Phase Commit in relational databases
• Performance killer, in particular for replication in the cloud
• Trade-off: wait for a subset of Slaves to commit, e.g., the majority of them

Master

Slave Slave Slave Slave

… …

Replicate

It’s ready to commit
new transaction

Wait for all slaves



Asynchronous replication

• The Master commits locally, it does not wait for any Slave
• Each Slave independently fetches updates from Master, which may fail…

• IF no Slave has replicated, then you’ve lost the data committed to the Master
• IF some Slaves have replicated and some haven’t, then you have to reconcile

• Faster and unreliable

Master

Slave Slave Slave Slave

… …

Replicate

Can commit other
transactions



Distributed databases

Different autonomous
machines, working

together to manage
the same dataset



Key features of distributed databases

• There are 3 typical problems in distributed databases:

• Consistency
• All the distributed databases provide the same data to the application

• Availability
• Database failures (e.g., master node) do not prevent survivors from 

continuing to operate

• Partition tolerance
• The system continues to operate despite arbitrary message loss, 

when connectivity failures cause network partitions



CAP Theorem
• The CAP theorem, also known as Brewer's theorem, 

states that it is impossible for a distributed system to 
simultaneously provide all three of the previous 
guarantees

• The theorem began as a conjecture made by 
University of California in 1999-2000

• Armando Fox and Eric Brewer, “Harvest, Yield and Scalable 
Tolerant Systems”, Proc. 7th Workshop Hot Topics in 
Operating Systems (HotOS 99), IEEE CS, 1999, pg. 174-178.

• In 2002 a formal proof was published,
establishing it as a theorem

• Seth Gilbert and Nancy Lynch, “Brewer's conjecture and 
the feasibility of consistent, available, partition-tolerant 
web services”, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59

• In 2012, a follow-up by Eric Brewer, “CAP twelve 
years later: How the "rules" have changed”

• IEEE Explore, Volume 45, Issue 2 (2012), pg. 23-29.

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1


CAP Theorem
• The easiest way to understand CAP is to think of two 

nodes on opposite sides of a partition. 

• Allowing at least one node to update state will cause 
the nodes to become inconsistent, thus forfeiting C. 

• If the choice is to preserve consistency, one side of 
the partition must act as if it is unavailable, thus 
forfeiting A. 

• Only when no network partition exists, is it possible 
to preserve both consistency and availability, thereby 
forfeiting P.

• The general belief is that for wide-area systems, 
designers cannot forfeit P and therefore have a 
difficult choice between C and A.

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed


CAP Theorem

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter


CA without P (local consistency)

• Partitioning (communication breakdown) causes a failure.

• We can still have Consistency and Availability of the data shared by agents 
within each Partition, by ignoring other partitions.
• Local rather than global consistency / availability

• Local consistency for a partial system, 100% availability for the partial 
system, and no partitioning does not exclude several partitions from 
existing with their own “internal” CA.

• So partitioning means having multiple independent systems with 100% CA 
that do not need to interact.



CP without A (transaction locking)

• A system is allowed to not answer requests at all (turn off “A”).

• We claim to tolerate partitioning/faults, because we simply block all 
responses if a partition occurs, assuming that we cannot continue to 
function correctly without the data on the other side of a partition.

• Once the partition is healed and consistency can once again be verified, we 
can restore availability and leave this mode.

• In this configuration there are global consistency, and global correct 
behaviour in partitioning is to block access to replica sets that are not in 
synch.

• In order to tolerate P at any time, we must sacrifice A at any time for global 
consistency.

• This is basically the transaction lock.



AP without C (best effort)

• If we don't care about global consistency (i.e. simultaneity), then 
every part of the system can make available what it knows. 

• Each part might be able to answer someone, even though the system 
as a whole has been broken up into incommunicable regions 
(partitions). 

• In this configuration “without consistency” means without the 
assurance of global consistency at all times. 



A consequence of CAP

“Each node in a system should be able to make decisions purely based on 
local state. If you need to do something under high load with failures

occurring and you need to reach agreement, you’re lost. If you’re 
concerned about scalability, any algorithm that forces you to run 

agreement will eventually become your bottleneck. Take that as a given.”
Werner Vogels, Amazon CTO and Vice President



Beyond CAP

• The "2 of 3" view is misleading on several fronts.

• First, because partitions are rare, there is little reason to forfeit C or A when the 
system is not partitioned. 

• Second, the choice between C and A can occur many times within the same 
system at very fine granularity; not only can subsystems make different choices, 
but the choice can change according to the operation or even the specific data or 
user involved. 

• Finally, all three properties are more continuous than binary. 
• Availability is obviously continuous from 0 to 100 percent
• There are also many levels of consistency
• Even partitions have nuances, including disagreement within the system about whether a 

partition exists



How the rules have changed

• Any networked shared-data system can have only 2 of 3 desirable properties at the same 
time

• Explicitly handling partitions, designers can optimize consistency and availability, thereby 
achieving some trade-off of all three

• CAP prohibits only a tiny part of the design space: 
• perfect availability (A) and consistency (C)

• in the presence of partitions (P), which are rare

• Although designers need to choose between consistency and availability when partitions 
are present, there is an incredible range of flexibility for handling partitions and 
recovering from them

• Modern CAP goal should be to maximize combinations of 
consistency (C) and availability (A) that make sense for the specific application



ACID

• The four ACID properties are:
• Atomicity (A) All systems benefit from atomic operations, the database 

transaction must completely succeed or fail, partial success is not allowed

• Consistency (C) During the database transaction, the database progresses 
from a valid state to another. In ACID, the C means that a transaction pre-
serves all the database rules, such as unique keys. In contrast, the C in CAP 
refers only to single copy consistency.

• Isolation (I) Isolation is at the core of the CAP theorem: if the system requires 
ACID isolation, it can operate on at most one side during a partition, because 
a client’s transaction must be isolated from other client’s transaction

• Durability (D) The results of applying a transaction are permanent, it must 
persist after the transaction completes, even in the presence of failures.



BASE

• Basically Available: the system provides availability, in terms of the 
CAP theorem

• Soft state: indicates that the state of the system may change over 
time, even without input, because of the eventual consistency model.

• Eventual consistency: indicates that the system will become 
consistent over time, given that the system doesn't receive input 
during that time

• Example: DNS – Domain Name Servers
• DNS is not multi-master



ACID versus BASE

• ACID and BASE represent two design philosophies at opposite ends of 
the consistency-availability spectrum

• ACID properties focus on consistency and are the traditional 
approach of databases

• BASE properties focus on high availability and to make explicit both 
the choice and the spectrum

• BASE: Basically Available, Soft state, Eventually consistent, work well 
in the presence of partitions and thus promote availability



Conflict detection and resolution

An example from a 
notable NoSQL

database



Conflict resolution problem

• There are two customers, A and B

• A books a hotel room, the last available
room

• B does the same, on a different node of 
the system, which was not consistent



Conflict resolution problem

• The hotel room document is affected by 
two conflicting updates

• Applications should solve the conflict with 
custom logic (it’s a business decision)

• The database can 
• Detect the conflict

• Provide a local solution, e.g., latest version is
saved as the winning version



Conflict

• CouchDB guarantees that each instance that sees the same 
conflict comes up with the same winning and losing 
revisions. 

• It does so by running a deterministic algorithm to pick the 
winner.
• The revision with the longest revision history list becomes the 

winning revision. 

• If they are the same, the _rev values are compared in ASCII sort 
order, and the highest wins.


