
A design recipe

A notable example of NoSQL design for «distributed transactions»

Design recipe: banking account

• Banks are serious business

• They need serious databases to store serious transactions and serious
account information

• They can’t lose or create money

• A bank must be in balance all the time

Design recipe: banking example

Say you want to give $100 to your cousin Paul for Christmas.

You need to:

decrease your account balance by 100$ increase Paul’s account balance by 100$
{

_id: "account_123456",

account:"bank_account_001",

balance: 900,

timestamp: 1290678353,45,

categories: ["bankTransfer"…],

…

}

{

_id: "account_654321",

account:"bank_account_002",

balance: 1100,

timestamp: 1290678353,46,

categories: ["bankTransfer"…],

…

}

• What if some kind of failure occurs between the two separate updates to the two
accounts?

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Bank

Design recipe: banking example

Design recipe: banking example

• What if some kind of failure occurs between the two separate updates to the two
accounts?

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Message lost during
transmission

Bank

Design recipe: banking example

• What if some kind of failure occurs between the two separate updates to the two
accounts?

• CouchDB cannot guarantee the bank balance.

• A different strategy (design) must be adopted.

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Message lost during
transmission

Bank

Banking recipe solution

• What if some kind of failure occurs between the two separate
updates to the two accounts?

• A NoSQL database without 2-Phase Commit cannot guarantee the
bank balance → a different strategy (design) must be adopted.

id: transaction001

from: "bank_account_001",

to: "bank_account_002",

qty: 100,

when:1290678353.45,

…

Design recipe: banking example

• How do we read the current account balance?

• Map
function(transaction){

emit(transaction.from, transaction.amount*-1);

emit(transaction.to, transaction.amount);

}

• Reduce

function(key, values){

return sum(values);

}

• Result

{rows: [{key: "bank_account_001", value: 900}]

{rows: [{key: "bank_account_002", value: 1100}]

The reduce function receives:
• key= bank_account_001,

values=[1000, -100]
• …
• key= bank_account_002,

values=[1000, 100]
• …

